15.213 A Client-Server Transaction

“The course that gives CMU its Zip!” Most network applications are based on the client -
server model:
- m A server process and one or more client processes
Neworkmprogrammlng = Server manages some resource .
Ap"l 20,, 2004 m Server provides service by manipulating resource for clients.

Topics 1. Client sends request
P - . Client Server ———
m Programmer’s view of the Internet (review) eSS e
m Sockets interface 4. Client 2. Server

- . 3. Server sends response
m Writing clients and servers handles handles

response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts).

A Programmer’s View of the Internet 1. IP Addresses
1. Hosts are mapped to a set of 32 -bit IP addresses . 32-bit IP addresses are stored in an IP address struct

m 128.2.203.179 m |P addresses are always stored in memory in network byte
= In IP V6, Host addresses are 64 bit: at some point in the order (big-endian byte order)

future a transition from IP V4 to IP V6 will happen m True in general for any integer transferred ina pa cket header
from one machine to another.
® E.g., the port number used to identify an Internet connection.

2. The set of IP addresses is mapped to a set of

. e A /* Internet address structure */
identifiers called Internet domain names .

struct in_addr {

= 128.2.203.179 is mapped to www.cs.cmu.edu . unsigned int s_addr; /* network byte order (big-endi an) */
h . Handy network byte-order conversion functions:
3.A pl’OCGSS on one Internet host can communicate htonl: convert longint from host to network byte order.
with a process on another Internet host over a htons: ~convert shortint from host to network byte order.

connection . ntohl: convert long int from network to host byte order.
ntohs: convert shortint from network to host byte order.
-3- 15-213, S'04 _4-

15-213, S'04

Page 1

2. Domain Naming System (DNS)

The Internet maintains a mapping between IP address es
and domain names in a huge worldwide distributed
database called DNS.

m Conceptually, programmers can view the DNS database as a
collection of millions of host entry structures

/* DNS host entry structure */
struct hostent {
char *h_name; /* official domain name of ho st */
char **h_aliases; /* null-terminated array of d omain names */
int h_addrtype; /* host address type (AF_INET) */
int h_length; /* length of an address, in bytes */
char **h_addr_list; /* null-terminated array of i n_addr structs */

Functions for retrieving host entries from DNS:
m gethostbyname : query key is a DNS domain name.

_5 m gethostbyaddr: query key is an IP address. 15213, 504

Clients

Examples of client programs
m Web browsers, ftp ,telnet ,ssh

How does a client find the server?

m The IP address in the server socket address identif ies the
host (more precisely, an adapter on the host)

m The (well-known) port in the server socket address
the service, and thus implicitly identifies the ser
that performs that service.

m Examples of well know ports

® Port 7: Echo server
® Port 22: Secure Shell (ssh) server (daemon)
® Port 25: Mail server
® Port 80: Web server

identifies
Ver process

15-213, S'04

Page 2

3. Internet Connections
Clients and servers communicate by sending streams
of bytes over connections .

Connections are point -to-point, full -duplex (2 -way
communication), and reliable.

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:

(o ¥ Koo)
‘ | (128.2.194.242:51213, 208.216.181.15: 1 :
: ! (128.2.194.242

Connection socket pair

Client host address
128.2.194.242

Server host address
208.216.181.15

Note: 51213 is an Note: is a well-known port
ephemeral port allocated associated with Web servers
-6- by the kernel 15-213, S'04

Using Ports to ldentify Services

Server host 128.2.194.242

Client host

Service request for
128.2.194.242:80
(i.e., the Web server)

Web server
(port 80)

Kernel

Echo server
(port 7)

Service request for
128.2.194.242:7
(i.e., the echo server)

Web server
(port 80)

Echo server
(port 7)

-8— 15-213, S'04

Servers

Servers are long -running processes (daemons).
= Created at boot-time (typically) by the init proces s (process 1)
= Run continuously until the machine is turned off.

Each server waits for requests to arrive on awell -known
port associated with a particular service.
m Port 7: echo server
m Port 22: ssh server
m Port 25: mail server
= Port 80: HTTP server

A machine that runs a server process is also often
referred to as a “server.”

-9- 15-213, S'04

Security Issues

Don't run services that you do not really need!

Open port detection utility: nmap
(see http:// www.insecure.org/nmap)

Port-knocking: ports appear to be closed, but open for
a brief period if the kernel detects a specific
sequence of connection attempts.

11 15-213, S'04

Page 3

Server Examples

Web server (port 80)
m Resource: files/compute cycles (CGI programs)
m Service: retrieves files and runs CGl programs on b ehalf of the
client

FTP server (20, 21, depreciated)

m Resource: files
m Service: stores and retrieve files

SSH server (22)
m Resource: terminal

See /etc/services fora
comprehensive list of the
services available on a
Linux machine.

m Service: proxies a terminal on the server machine o ver an
excrypted and authenticated connection. Also support s file
transfers, forwarding of ports, and X11 sessions.

Mail server (25)
m Resource: email “spool” file
m Service: stores mail messages in spool file

_10- 15-213, S04

Sockets Interface

Created in the early 80's as part of the original B erkeley
distribution of Unix that contained an early versio n of
the Internet protocols.

Provides a user -level interface to the network.
Underlying basis for most Internet applications.

Based on client/server programming model.

12 15-213, S'04

Overview of the Sockets Interface

Client Server

open_listenfd

open_clientfd
Connection
Await connection
- - - - request from
_13- 15-213, S'04

Sockets

What is a socket?
= To the kernel, a socket is an endpoint of communica tion.

m To an application, a socket is a file descriptor th at lets the
application read/write from/to the network.
® Remember: All Unix I/O devices, including networks, are
modeled as files.

Clients and servers communicate with each other by
reading from and writing to socket descriptors.

The main distinction between regular file /O and s ocket
1/0 is how the application “opens” the socket
descriptors.

-14- 15-213, S'04

Socket Address Structures

Generic socket address:
m For address arguments to connect , bind , and accept.

m Necessary only because C did not have generic (void *)
pointers when the sockets interface was designed.

struct sockaddr {
unsigned short sa_family; /* protocol family */
char sa_data[14]; /* address data. */

h

Internet -specific socket address:

m Must cast (sockaddr_in *) to (sockaddr *) for connect ,
bind , and accept .

struct sockaddr_in {
unsigned short sin_family; /* address family (alw ays AF_INET) */
unsigned short sin_port; /* port num in network byte order */
struct in_addr sin_addr; /*IP addr in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struc t sockaddr) */
h
-15- 15-213, S'04

Echo Client Main Routine

#include "csapp.h"

/* usage: ./echoclient host port */

int main(int argc, char **argv)

{
int clientfd, port;
char *host, buf[MAXLINE];
rio_t rio;

host = argv[1];
port = atoi(argv[2]);

clientfd = Open_clientfd(host, port);
Rio_readinitb(&rio, clientfd);

while (Fgets(buf, MAXLINE, stdin) != NULL) {
Rio_writen(clientfd, buf, strlen(buf));
Rio_readlineb(&rio, buf, MAXLINE);
Fputs(buf, stdout);

}
Close(clientfd);
exit(0);

_16- } 15-213, S'04

Echo Client: open_clientfd

int open_clientfd(char *hostname, int port)

{ .) X This function opens a
cientic; connection from the client to

struct hostent *hp; the server at hostname:port
struct sockaddr_in serveraddr;

if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

/* Fill in the server's IP address and port */
if ((hp = gethostbyname(hostname)) == NULL)

return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
bcopy((char *)hp->h_addr,

(char *)&serveraddr.sin_addr.s_addr, hp->h_length);

serveraddr.sin_port = htons(port);

/* Establish a connection with the server */

if (connect(clientfd, (SA *) &serveraddr, sizeof(se
return -1;

return clientfd;

rveraddr)) < 0)

Echo Client: open_clientfd
(gethostbyname)

The client then builds the server's Internet addres S.

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server's IP address */

/*fill in the server's IP address and port */
if ((hp = gethostbyname(hostname)) == NULL)

return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
bcopy((char *)hp->h_addr,

(char *)&serveraddr.sin_addr.s_addr, hp->h_length);

serveraddr.sin_port = htons(port);

_19- 15-213, S'04

Page 5

Echo Client: open_clientfd
(socket)

socket creates a socket descriptor on the client.

m AF_INET: indicates that the socket is associated with Inte rnet
protocols.

m SOCK_STREAMelects a reliable byte stream connection.

int clientfd; /* socket descriptor */

if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) <0)
return -1; /* check errno for cause of error */
... (more)
18- 15-213, S'04

Echo Client: open_clientfd
(connect)

Finally the client creates a connection with the se rver.
m Client process suspends (blocks) until the connecti on is created.

m After resuming, the client is ready to begin exchan ging messages
with the server via Unix 1/O calls on descriptor clientfd.

int clientfd; /* socket descripto r*/
struct sockaddr_in serveraddr; /* server address */
typedef struct sockaddr SA; /* generic sockaddr */

/* Establish a connection with the server */

if (connect(clientfd, (SA *)&serveraddr, sizeof(ser
return -1;

return clientfd;

veraddr)) < 0)

_20- 15-213, S'04

Echo Server: Main Routine

int main(int argc, char *argv) {
int listenfd, connfd, port, clientlen;
struct sockaddr_in clientaddr;
struct hostent *hp;
char *haddrp;

port = atoi(argv[1]); /* the server listens on a po rt passed
on the command line */
listenfd = open_listenfd(port);

while (1) {
clientlen = sizeof(clientaddr);
connfd = Accept(listenfd, (SA *)&clientaddr, &client len);
hp = Gethostbyaddr((const char *)&clientaddr.sin_add r.s_addr,

sizeof(clientaddr.sin_addr.s_addr), AF_INET);
haddrp = inet_ntoa(clientaddr.sin_addr);

printf(“server connected to %s (%s)\n", hp->h_name, haddrp);
echo(connfd);
Close(connfd);
}
}
21— 15-213, S'04

Echo Server: open_listenfd (cont)

/* Listenfd will be an endpoint for all requests to port
on any IP address for this host */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
serveraddr.sin_port = htons((unsigned short)port);
if (bind(listenfd, (SA *)&serveraddr, sizeof(server addr)) < 0)
return -1;

/* Make it a listening socket ready to accept
connection requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd;

o3 15-213, S'04

Page 6

Echo Server: open_listenfd

int open_listenfd(int port)

int listenfd, optval=1;
struct sockaddr_in serveraddr;

/* Create a socket descriptor */

if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

... (more)

if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) <0)
return -1;
/* Eliminates "Address already in use" error from b ind. */

—22- 15-213, S'04

Echo Server: open_listenfd
(socket)

socket creates a socket descriptor on the server.

m AF_INET: indicates that the socket is associated with Inte
protocols.

m SOCK_STREAMelects a reliable byte stream connection.

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1;

rnet

—24- 15-213, S'04

Echo Server: open_listenfd
(setsockopt)

The socket can be given some attributes.

/* Eliminates "Address already in use" error from b ind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)

return -1;

Handy trick that allows us to rerun the server
immediately after we Kill it.
m Otherwise we would have to wait about 15 secs.
m Eliminates “Address already in use” error from bind().

m But can cause reception of fragments from previous
connection (not likely, but possible!)

Strongly suggest you do this for all your servers t 0
simplify debugging.

-25 15-213, S'04

Echo Server: open_listenfd
(bind)

bind associates the socket with the socket address we
just created.

int listenfd; /* listening socket * /
struct sockaddr_in serveraddr; /* server's socket add r*
/¥ listenfd will be an endpoint for all requests to port
on any IP address for this host */
if (bind(listenfd, (SA *)&serveraddr, sizeof(server addr)) < 0)
return -1;
_27- 15-213, S'04

Page 7

Echo Server: open_listenfd
(initialize socket address)

Next, we initialize the socket with the server's In ternet
address (IP address and port)

struct sockaddr_in serveraddr; /* server's socket add r

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof(serveraddr));

serveraddr.sin_family = AF_INET;

serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);

serveraddr.sin_port = htons((unsigned short)port);

IP addr and port stored in network (big -endian) byte order
m htonl() converts longs from host byte order to network byte

order.
m htons() convers shorts from host byte order to network byte
order.
-26- 15-213, S04

Echo Server: open_listenfd
(listen)

listen indicates that this socket will accept
connection (connect) requests from clients.

int listenfd; /* listening socket */

/* Make it a listening socket ready to accept conne ction requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd,;

We're finally ready to enter the main serverloopt hat
accepts and processes client connection requests.

og 15-213, S'04

Echo Server: Main Loop

The server loops endlessly, waiting for connection
requests, then reading input from the client, and
echoing the input back to the client.

main() {
/* create and configure the listening socket */

while(1) {
/* Accept(): wait for a connection request */
/* echo(): read and echo input lines from client ti | EOF */
/* Close(): close the connection */

}

—-29- 15-213, S'04

Echo Server: accept lllustrated

listenfd(3) 1. Server blocks in accept,

. O waiting for connection
Client Server

request on listening

clientfd descriptor |i stenfd.
Connection listenfd(3)
request e 2. Client makes connection
Server request by calling and blocking in
Shienttd connect .
listenfd(3) 3. Server returns connf d from
o accept . Client returns from
Client Server connect . Connection is now
Clientfd connfd(d) established between clientfd
and connfd.
_31- 15-213, S'04

Page 8

Echo Server: accept

accept() blocks waiting for a connection request.

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr_in clientaddr;

int clientlen;

clientlen = sizeof(clientaddr);
connfd = Accept(listenfd, (SA *)&clientaddr, &client len);

accept returns a connected descriptor (connfd) with

the same properties as the listening descriptor
(listenfd)

m Returns when the connection between client and serv eris
created and ready for 1/O transfers.

m All I/O with the client will be done via the connec ted socket.

accept also fills in client's IP address.
-30- 15-213, S'04

Connected vs. Listening Descriptors

Listening descriptor
= End point for client connection requests.
m Created once and exists for lifetime of the server.

Connected descriptor
= End point of the connection between client and serv er.

m A new descriptor is created each time the serverac cepts a
connection request from a client.

m Exists only as long as it takes to service client.

Why the distinction?
m Allows for concurrent servers that can communicate over
many client connections simultaneously.
® E.g., Each time we receive a new request, we fork a child to
handle the request.

32 15-213, S'04

Echo Server: Identifying the Client

The server can determine the domain name and IP
address of the client.

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; /* pointer to dotted decimal s tring */

hp = Gethostbyaddr((const char *)&clientaddr.sin_add r.s_addr,
sizeof(clientaddr.sin_addr.s_addr), AF_INET);

haddrp = inet_ntoa(clientaddr.sin_addr);

printf("server connected to %s (%s)\n", hp->h_name, haddrp);

-33- 15-213, S'04

Testing Servers Using telnet

The telnet program is useful for testing servers that
transmit ASCII strings over Internet connections
= Our simple echo server
= Web servers
= Mail servers

Usage:
= unix> telnet <host> <portnunber>
= Creates a connection with a server running on <host > and
listening on port <por t nunber >.
35— 15-213, S04

Page 9

Echo Server: echo

The server uses RIO to read and echo text lines unt |l
EOF (end-of-file) is encountered.

m EOF notification caused by client calling
close(clientfd).

m IMPORTANT: EOF is a condition, not a particular dat ~ a byte.

void echo(int connfd)

size_tn;
char bufMAXLINE];
rio_t rio;

Rio_readinitb(&rio, connfd);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
printf("server received %d bytes\n", n);
Rio_writen(connfd, buf, n);

—34- 15-213, S04

Testing the Echo Server With telnet

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (
server received 5 bytes: 123

server established connection with KITTYHAWK.CMCL (
server received 8 bytes: 456789

128.2.194.242)

128.2.194.242)

kittyhawk> tel net bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is "\]'.

123

123

Connection closed by foreign host.
kittyhawk> tel net bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is "\]'.

456789

456789

Connection closed by foreign host.
kittyhawk>

_36- 15-213, S'04

Running the Echo Client and Server

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (
server received 4 bytes: 123

server established connection with KITTYHAWK.CMCL (
server received 7 bytes: 456789

128.2.194.242)

128.2.194.242)

kittyhawk> echoclient bass 5000
Please enter msg: 123
Echo from server: 123

kittyhawk> echoclient bass 5000
Please enter msg: 456789

Echo from server: 456789

kittyhawk>

_37- 15-213, S04

Page 10

For More Information

W. Richard Stevens, “Unix Network Programming:
Networking APIls: Sockets and XTI", Volume 1,
Second Edition, Prentice Hall, 1998.

m THE network programming bible.

Complete versions of the echo client and server are
developed in the text.
= Available from csapp.cs.cmu.edu

m You should compile and run them for yourselves to s ee how
they work.

m Feel free to borrow any of this code.

-38- 15-213, S'04

