
Code Optimization I
Feb. 12, 2008

Code Optimization I
Feb. 12, 2008

TopicsTopics
Machine-Independent Optimizations

Basic optimizations
Optimization blockers

class09.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, S’08

Harsh RealityHarsh Reality
ThereThere’’s more to performance than asymptotic complexitys more to performance than asymptotic complexity

Constant factors matter too!Constant factors matter too!
Easily see 10:1 performance range depending on how code is
written
Must optimize at multiple levels:

algorithm, data representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
How programs are compiled and executed
How to measure program performance and identify bottlenecks
How to improve performance without destroying code
modularity and generality

– 3 – 15-213, S’08

Optimizing CompilersOptimizing Compilers
Provide efficient mapping of program to machineProvide efficient mapping of program to machine

register allocation
code selection and ordering (scheduling)
dead code elimination
eliminating minor inefficiencies

DonDon’’t (usually) improve asymptotic efficiencyt (usually) improve asymptotic efficiency
up to programmer to select best overall algorithm
big-O savings are (often) more important than constant factors

but constant factors also matter

Have difficulty overcoming Have difficulty overcoming ““optimization blockersoptimization blockers””
potential memory aliasing
potential procedure side-effects

– 4 – 15-213, S’08

Limitations of Optimizing CompilersLimitations of Optimizing Compilers
Operate under fundamental constraintOperate under fundamental constraint

Must not cause any change in program behavior under any
possible condition
Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

Behavior that may be obvious to the programmer can be Behavior that may be obvious to the programmer can be
obfuscated by languages and coding stylesobfuscated by languages and coding styles

e.g., Data ranges may be more limited than variable types suggest

Most analysis is performed only within proceduresMost analysis is performed only within procedures
Whole-program analysis is too expensive in most cases

Most analysis is based only on Most analysis is based only on staticstatic informationinformation
Compiler has difficulty anticipating run-time inputs

When in doubt, the compiler must be conservativeWhen in doubt, the compiler must be conservative

– 5 – 15-213, S’08

Machine-Independent OptimizationsMachine-Independent Optimizations
Optimizations that you or the compiler should do Optimizations that you or the compiler should do

regardless of processor / compilerregardless of processor / compiler

Code MotionCode Motion
Reduce frequency with which computation performed

If it will always produce same result
Especially moving code out of loop

long j;
int ni = n*i;
for (j = 0; j < n; j++)

a[ni+j] = b[j];

void set_row(double *a, double *b,
long i, long n)

{
long j;
for (j = 0; j < n; j++)

a[n*i+j] = b[j];
}

– 6 – 15-213, S’08

Compiler-Generated Code MotionCompiler-Generated Code Motion

set_row:
xorl %r8d, %r8d # j = 0
cmpq %rcx, %r8 # j:n
jge .L7 # if >= goto done
movq %rcx, %rax # n
imulq %rdx, %rax # n*i outside of inner loop
leaq (%rdi,%rax,8), %rdx # rowp = A + n*i*8

.L5: # loop:
movq (%rsi,%r8,8), %rax # t = b[j]
incq %r8 # j++
movq %rax, (%rdx) # *rowp = t
addq $8, %rdx # rowp++
cmpq %rcx, %r8 # j:n
jl .L5 # if < goot loop

.L7: # done:
rep ; ret # return

long j;
long ni = n*i;
double *rowp = a+ni;
for (j = 0; j < n; j++)

*rowp++ = b[j];

void set_row(double *a, double *b,
long i, long n)

{
long j;
for (j = 0; j < n; j++)

a[n*i+j] = b[j];
}

Where are the FP operations?

– 7 – 15-213, S’08

Reduction in StrengthReduction in Strength
Replace costly operation with simpler one
Shift, add instead of multiply or divide
16*x --> x << 4

Utility machine dependent
Depends on cost of multiply or divide instruction
On Pentium IV, integer multiply requires 10 CPU cycles

Recognize sequence of products

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++)
a[ni + j] = b[j];

ni += n;
}

– 8 – 15-213, S’08

Share Common SubexpressionsShare Common Subexpressions
Reuse portions of expressions
Compilers often not very sophisticated in exploiting
arithmetic properties

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j

imulq %rcx, %rsi # i*n
addq %rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subq %rcx, %rax # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n

– 9 – 15-213, S’08

void lower(char *s)
{
int i;
for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');

}

Optimization Blocker #1:
Procedure Calls
Optimization Blocker #1:
Procedure Calls

Procedure to Convert String to Lower CaseProcedure to Convert String to Lower Case

Extracted from 213 lab submissions, Fall, 1998

– 10 – 15-213, S’08

Lower Case Conversion PerformanceLower Case Conversion Performance

Time quadruples when double string length
Quadratic performance

0.0001
0.001

0.01
0.1

1
10

100
1000

25
6

51
2 1k 2k 4k 8k 16
k

32
k

64
k

12
8k

25
6k

C
P

U
 S

ec
on

ds

String Length

– 11 – 15-213, S’08

Convert Loop To Goto FormConvert Loop To Goto Form

strlen executed every iteration

void lower(char *s)
{

int i = 0;
if (i >= strlen(s))
goto done;

loop:
if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');
i++;
if (i < strlen(s))
goto loop;

done:
}

– 12 – 15-213, S’08

Calling StrlenCalling Strlen

StrlenStrlen performanceperformance
Only way to determine length of string is to scan its entire length,
looking for null character.

Overall performance, string of length NOverall performance, string of length N
N calls to strlen
Require times N, N-1, N-2, …, 1
Overall O(N2) performance

/* My version of strlen */
size_t strlen(const char *s)
{

size_t length = 0;
while (*s != '\0') {

s++;
length++;

}
return length;

}

– 13 – 15-213, S’08

Improving PerformanceImproving Performance

Move call to strlen outside of loop
Since result does not change from one iteration to another
Form of code motion

void lower(char *s)
{
int i;
int len = strlen(s);
for (i = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');

}

– 14 – 15-213, S’08

Lower Case Conversion PerformanceLower Case Conversion Performance
Time doubles when double string length
Linear performance of lower2

0.000001

0.0001

0.01

1

100

10000

25
6

51
2 1k 2k 4k 8k 16
k

32
k

64
k

12
8k

25
6k

lower1 lower2

CP
U

 S
ec

on
ds

String Length

– 15 – 15-213, S’08

Optimization Blocker: Procedure CallsOptimization Blocker: Procedure Calls
Why couldnWhy couldn’’t compiler move t compiler move strlenstrlen out of inner loop?out of inner loop?

Procedure may have side effects
Alters global state each time called

Function may not return same value for given arguments
Depends on other parts of global state
Procedure lower could interact with strlen

Warning:Warning:
Compiler treats procedure call as a black box
Weak optimizations near them

Remedies:Remedies:
Use of inline functions
Do your own code motion

int lencnt = 0;
size_t strlen(const char *s)
{

size_t length = 0;
while (*s != '\0') {

s++; length++;
}
lencnt += length;
return length;

}
– 16 – 15-213, S’08

Memory MattersMemory Matters

Code updates b[i] on every iteration
Why couldn’t compiler optimize this away?

sum_rows1 inner loop
.L53:

addsd (%rcx), %xmm0 # FP add
addq $8, %rcx
decq %rax
movsd %xmm0, (%rsi,%r8,8) # FP store
jne .L53

/* Sum rows is of n X n matrix a
and store in vector b */

void sum_rows1(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {

b[i] = 0;
for (j = 0; j < n; j++)

b[i] += a[i*n + j];
}

}

– 17 – 15-213, S’08

Memory AliasingMemory Aliasing

Code updates b[i] on every iteration
Must consider possibility that these updates will affect
program behavior

/* Sum rows is of n X n matrix a
and store in vector b */

void sum_rows1(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {

b[i] = 0;
for (j = 0; j < n; j++)

b[i] += a[i*n + j];
}

}

double A[9] =
{ 0, 1, 2,
4, 8, 16},

32, 64, 128};
double B[3] = A+3;
sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:

– 18 – 15-213, S’08

Removing AliasingRemoving Aliasing

No need to store intermediate results

sum_rows2 inner loop
.L66:

addsd (%rcx), %xmm0 # FP Add
addq $8, %rcx
decq %rax
jne .L66

/* Sum rows is of n X n matrix a
and store in vector b */

void sum_rows2(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {

double val = 0;
for (j = 0; j < n; j++)

val += a[i*n + j];
b[i] = val;

}
}

– 19 – 15-213, S’08

Unaliased VersionUnaliased Version

Aliasing still creates interference

double A[9] =
{ 0, 1, 2,
4, 8, 16},

32, 64, 128};
double B[3] = A+3;
sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 27, 16]

i = 2: [3, 27, 224]

Value of B:

/* Sum rows is of n X n matrix a
and store in vector b */

void sum_rows2(double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {

double val = 0;
for (j = 0; j < n; j++)

val += a[i*n + j];
b[i] = val;

}
}

– 20 – 15-213, S’08

Optimization Blocker: Memory AliasingOptimization Blocker: Memory Aliasing
AliasingAliasing

Two different memory references specify single location
Easy to have happen in C

Since allowed to do address arithmetic
Direct access to storage structures

Get in habit of introducing local variables
Accumulating within loops
Your way of telling compiler not to check for aliasing

– 21 – 15-213, S’08

Machine-Independent Opt. SummaryMachine-Independent Opt. Summary
Code MotionCode Motion

Compilers are good at this for simple loop/array structures
Don’t do well in the presence of procedure calls and memory
aliasing

Reduction in StrengthReduction in Strength
Shift, add instead of multiply or divide

Compilers are (generally) good at this
Exact trade-offs machine-dependent

Keep data in registers (local variables) rather than memory
Compilers are not good at this, since concerned with aliasing
Compilers do know how to allocate registers (no need for
register declaration)

Share Common Share Common SubexpressionsSubexpressions
Compilers have limited algebraic reasoning capabilities

