Carnegie Mellon

Course Overview

15-213 /18-213: Introduction to Computer Systems
15t Lecture, Jan. 17, 2012

Instructors:
Todd C. Mowry, Anthony Rowe

The course that gives CMU its “Zip”!

Overview

m Course theme
m Five realities
m How the course fits into the CS/ECE curriculum

m Logistics

Course Theme:

Abstraction Is Good But Don’t Forget Reality

m Most CS and CE courses emphasize abstraction
= Abstract data types
= Asymptotic analysis

m These abstractions have limits

= Especially in the presence of bugs
"= Need to understand details of underlying implementations

m Useful outcomes from taking 213
= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
" Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals

m Example 1:Is x? 2 0?

Joea2ene v)306... 1,307... | |...32767...-32,7%8...| | -32767...-32.%6...

(o R ete B
B e e %ﬁ% 2

|| || H| F

= 40000 * 40000 -> 1600000000
= 50000 * 50000 - ??

m Example 2:Is (x +y)+z = x+(y +2)?
® Unsigned & Signed Int’s: Yes!
" Float’s:

= (1e20+-1e20) +3.14 > 3.14
= 1e20 +(-1e20 + 3.14) > ??

" Float’s: Yes!

BAAA

Source: xkcd.com/571 4

Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I {4 I”

m Cannot assume all “usual” mathematical properties
" Due to finiteness of representations
" Integer operations satisfy “ring” properties
= Commutativity, associativity, distributivity
" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation
" Need to understand which abstractions apply in which contexts

" Important issues for compiler writers and serious application programmers

Great Reality #2:

You've Got to Know Assembly

m Chances are, you’ll never write programs in assembly
= Compilers are much better & more patient than you are

m But: Understanding assembly is key to machine-level execution
model

Behavior of programs in presence of bugs

= High-level language models break down

Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency

Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state

Creating / fighting malware
= x86 assembly is the language of choice!

Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

m Memory is not unbounded
" |t must be allocated and managed
" Many applications are memory dominated

m Memory referencing bugs especially pernicious

= Effects are distant in both time and space

m Memory performance is not uniform
® Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

Carnegie Mellon

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

fun (0) - 3.14

fun (1) - 3.14

fun (2) - 3.1399998604856

fun(3) =2 2.00000061035156

fun (4) =2 3.14, then segmentation fault

m Result is architecture specific

Carnegie Mellon

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

fun (0) - 3.14
fun(1l) - 3.14
fun (2) - 3.1399998604856
fun (3) > 2.00000061035156
fun (4) =2 3.14, then segmentation fault
Exp|anation: Saved State 4
d7 ... d4 3
d3 do 9 Location accessed by
— fun (i)
al[1] 1
al@] 0

Memory Referencing Errors

m C and C++ do not provide any memory protection
® Qut of bounds array references
" |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby or ML
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

10

Great Reality #4: There’s more to

performance than asymptotic complexity

m Constant factors matter too!

m And even exact op count does not predict performance
" Easily see 10:1 performance range depending on how code written
" Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
m Must understand system to optimize performance
" How programs compiled and executed
" How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

1

Carnegie Mellon

Memory System Performance Example

void copyij(int src[2048][2048], ||void copyji(int src[2048][2048],
int dst[20487][2048]) int dst[2048][2048])
{ {
int 1,73; int 1,73;
for (1 = 0; 1 < 2048; 1++) for (3 = 0;] < 2048; j++)
for (j = 0; j < 2048; j++)>< for (i = 0; i < 2048; i++)
! dst[i][Jj] = src[il[]]; . dst[i][Jj] = src[i][]];

21 times slower

m Hierarchical memory organization (Pentium 4)
m Performance depends on access patterns

" Including how step through multi-dimensional array

12

Great Reality #5:
Computers do more than execute programs

m They need to get data in and out
= |/O system critical to program reliability and performance

m They communicate with each other over networks

" Many system-level issues arise in presence of network

Concurrent operations by autonomous processes

Coping with unreliable media

Cross platform compatibility

Complex performance issues

13

Carnegie Mellon

Role within CS/ECE Curriculum

CS 412 ECE 545/549
OS Practicum Capstone
CS 415 CS 441 S 41.0 CS 411 EC.E .340 ECE 447 ECE 349 ECE 348
Operating . Digital . Embedded Embedded
Databases Networks Compilers . Architecture
Systems Computation Systems System Eng.
Network Processes Machine
Data Reps. , : Execution Model
Memory Model Protocols Mem. Mgmt Code Arithmetic

Memory System

_

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

CS 122
Imperative
Programming

14

Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog
® QOperating Systems
= I[mplement large portions of operating system
= Compilers
= Write compiler for simple language
= Networking
= Implement and simulate network protocols

15

Course Perspective (Cont.)

m Our Course is Programmer-Centric

" Purpose is to show that by knowing more about the underlying system,
one can be more effective as a programmer

" Enable you to
= Write programs that are more reliable and efficient
= |[ncorporate features that require hooks into OS
— E.g., concurrency, signal handlers
= Cover material in this course that you won’t see elsewhere
"= Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone!

16

Teaching staff

Todd C. Mowry Anthony Rowe

17

Carnegie Mellon

Textbooks

m Randal E. Bryant and David R. O’Hallaron,

= “Computer Systems: A Programmer’s Perspective, Second
Edition” (CS:APP2e), Prentice Hall, 2011

" http://csapp.cs.cmu.edu
" This book really matters for the course!
= How to solve labs
= Practice problems typical of exam problems

m Brian Kernighan and Dennis Ritchie,
= “The C Programming Language, Second Edition”, Prentice Hall, 1988

18

Course Components

m Lectures
" Higher level concepts

m Recitations

= Applied concepts, important tools and skills for labs, clarification of
lectures, exam coverage

m Labs (7)

= The heart of the course
= 1-2 weeks each
" Provide in-depth understanding of an aspect of systems
® Programming and measurement
m Exams (midterm + final)

" Test your understanding of concepts & mathematical principles

19

Getting Help
m Class Web page: http://www.cs.cmu.edu/~213
" Complete schedule of lectures, exams, and assignments

= Copies of lectures, assignments, exams, solutions
= Clarifications to assignments

m Blackboard
= We won’t be using Blackboard for the course

20

Carnegie Mellon

Getting Help

m Discussion site: piazza.com/cmu/spring2012/1521318213
= Use this for all communication with the teaching staff
" |t includes private as well as public message options
® Send email to individual instructors only to schedule appointments

m Office hours:
" SMTWR, 5:30-7:30pm, WeH 5207

m 1:1 Appointments

" You can schedule 1:1 appointments with any of the teaching staff

21

Carnegie Mellon

Policies: Assignments (Labs) And Exams

m Work groups

" You must work alone on all assignments

m Handins
= Assignments due at 11:59pm on Tues or Thurs evening

= Electronic handins using Autolab (no exceptions!)

m Conflict exams, other irreducible conflicts

= OK, but must make PRIOR arrangements with Prof. Mowry or Prof. Rowe

= Notifying us well ahead of time shows maturity and makes us like you

more (and thus to work harder to help you out of your problem)

m Appealing grades

= Within 7 days of completion of grading

= Following procedure described in syllabus
® Labs: Email to the staff mailing list
" Exams: Talk to Prof. Mowry or Prof. Rowe »

Facilities

m Labs will use the Intel Computer Systems Cluster
(aka “the shark machines”)

®]linux> ssh shark.ics.cs.cmu.edu

= 21 servers donated by Intel for 213
= 10 student machines (for student logins)
= 1 head node (for Autolab server and instructor logins)
= 10 grading machines (for autograding)

® Each server: 8 Nehalem cores, 32 GB DRAM, RHEL 6.1

= Rack mounted in Gates machine room

® Login using your Andrew ID and password

m Getting help with the cluster machines:

" Please direct questions to staff mailing list

23

Timeliness

m Grace days
= 5 grace days for the course
" Limit of 2 grace days per lab used automatically
= Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks
= Save them until late in the term!

m Lateness penalties
= Once grace day(s) used up, get penalized 15% per day
" No handins later than 3 days after due date

m Catastrophic events
" Major illness, death in family, ...
" Formulate a plan (with your academic advisor) to get back on track

m Advice
® Once you start running late, it’s really hard to catch up

24

Carnegie Mellon

Cheating

m What is cheating?
= Sharing code: by copying, retyping, looking at, or supplying a file
= Coaching: helping your friend to write a lab, line by line
= Copying code from previous course or from elsewhere on WWW
= Only allowed to use code we supply, or from CS:APP website

m What is NOT cheating?

= Explaining how to use systems or tools

= Helping others with high-level design issues
m Penalty for cheating:

= Removal from course with failing grade

= Permanent mark on your record
m Detection of cheating:

= We do check
® Qur tools for doing this are much better than most cheaters think! 25

Other Rules of the Lecture Hall

m Laptops: permitted

m Electronic communications: forbidden

" No email, instant messaging, cell phone calls, etc

m Presence in lectures, recitations: voluntary, recommended

26

Policies: Grading

m Exams (50%): midterm (20%), final (30%)
m Labs (50%): weighted according to effort

m Final grades based on a combination of straight scale and
curving.

27

Programs and Data

m Topics
" Bits operations, arithmetic, assembly language programs
= Representation of C control and data structures
" Includes aspects of architecture and compilers

m Assignments
= |1 (datalab): Manipulating bits
= |2 (bomblab): Defusing a binary bomb
= |3 (buflab): Hacking a buffer bomb

28

The Memory Hierarchy

m Topics
= Memory technology, memory hierarchy, caches, disks, locality
" Includes aspects of architecture and OS

m Assignments
® |4 (cachelab): Building a cache simulator and optimizing for locality.
= Learn how to exploit locality in your programs.

29

Carnegie Mellon

Performance

m Topics
= Co-optimization (control and data), measuring time on a computer
" Includes aspects of architecture, compilers, and OS

30

Exceptional Control Flow

m Topics

= Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

" Includes aspects of compilers, OS, and architecture

m Assignments
= L5 (tshlab): Writing your own Unix shell.
= A first introduction to concurrency

3

Virtual Memory

m Topics
= Virtual memory, address translation, dynamic storage allocation
" Includes aspects of architecture and OS

m Assignments
= L6 (malloclab): Writing your own malloc package
= Get a real feel for systems-level programming

32

Networking, and Concurrency

m Topics
= High level and low-level I/O, network programming
" |nternet services, Web servers
® concurrency, concurrent server design, threads

|/O multiplexing with select

Includes aspects of networking, OS, and architecture

m Assignments
= L7 (proxylab): Writing your own Web proxy

= Learn network programming and more about concurrency and
synchronization.

33

Lab Rationale

m Each lab has a well-defined goal such as solving a puzzle or
winning a contest

m Doing the lab should result in new skills and concepts

m We try to use competition in a fun and healthy way
= Set a reasonable threshold for full credit
® Post intermediate results (anonymized) on Web page for glory!

34

autolab.cs.cmu.edu

m Labs are provided by the Autolab system
= Autograding system developed by CMU students and faculty
= Using transient VMs on-demand to autograde untrusted code.

" Precursor to worldwide autograding system

m With Autolab you can use your Web browser to:
= Download the lab materials
= Stream autoresults to a Web scoreboard as you work
®" Handin your code for autograding by the Autolab server

View the complete history of your code handins, autograded results, and
instructor’s evaluations.

= \/iew the class scoreboard

35

Carnegie Mellon

Welcome
and Enjoy!

36

Carnegie Mellon

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_ from kernel (void *user dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user dest, kbuf, len);

return len;

m Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find vulnerabilities in
programs

37

Carnegie Mellon

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user_dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff () ({
char mybuf[MSIZE] ;
copy from kernel (mybuf, MSIZE) ;

printf (“$s\n”, mybuf) ;

38

Carnegie Mellon

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user_dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy from kernel (mybuf, -MSIZE) ;

39

Carnegie Mellon

Assembly Code Example

m Time Stamp Counter

= Special 64-bit register in Intel-compatible machines
" Incremented every clock cycle

® Read with rdtsc instruction
m Application

= Measure time (in clock cycles) required by procedure

double ¢t;

start counter();

P();

t = get_counter();

printf ("P required %f clock cycles\n", t);

40

Code to Read Counter

m Write small amount of assembly code using GCC’s asm facility
m Inserts assembly code into machine code generated by compiler

0;
0;

static unsigned cyc hi
static unsigned cyc_lo

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/

void access_counter (unsigned *hi, unsigned *1o0)

{

asm("rdtsc; movl %$%edx,%0; movl %$%eax,%1"
Ne=p" (*hi) , Ne=p" (*10)

"%edx" , "%eax") ;

4

Carnegie Mellon

The Memory Mountain 267 Gitz
32 KB L1 d-cache

256 KB L2 cache

L1 8 MB L3 cache
7000 T/ copyij

6000 -
5000 A
4000 A

L2
3000

Read throughput (MB/s)

2000 - L3

1000 -

copyJji

s1
s3
S5
s7
s9
2K

Mem

s11
™
128K
16K

s13

Stride (x8 bytes)

s15
8M

Size (bytes)

s32
64M

42

Carnegie Mellon

Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)

Gflop/s
50000
_ —a

37500 Best code (K. Goto)
25000

12500

Triple loop
0 w v .
0 2,250 4,500 6,750 9,000

matnx size

m Standard desktop computer, vendor compiler, using optimization flags
m Both implementations have exactly the same operations count (2n3)

m What is going on?
43

Carnegie Mellon

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

50000
37500
Multiple threads: 4x

25000
12500

X Vector instructions: 4x

0 ' * * Memory hiera'rchy and other optimizations: 20X y
0 2,250 4,500 6,750 9,000

matrix size
m Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

m Effect: fewer register spills, L1/L2 cache misses, and TLB misses u

