
Introduction to 
Computer Systems

Topics:Topics:
 Assembly
 Stack discipline
 Structs/alignment
 Caching

CS 213 S ’12rec8.pdf

15-213
“The Class That Gives CMU Its Zip!”

Taerim Kim
March 5, 2012



– 2 – 15-213, S’12

Midterm

What?What?
 Everything through caching

Where?Where?
 UC McConomy

When?When?
 1:30pm – 2:50pm, Tuesday, March 6

Who?Who?
 You

Why? D:Why? D:
 20 percent of your final grade

Relax—you get a cheat sheetRelax—you get a cheat sheet
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Brief overview of exam topics

Data representationData representation
 Integers
 Floating point
 Arrays
 Structs

AssemblyAssembly
 Registers
 Memory addressing
 Control flow
 Stack discipline

CachingCaching
 Locality
 Dimensions
 Tag, set index, block 

offset
 Eviction policy
 Blocking
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By request

Floating pointFloating point
 Representation
 Conversion

AssemblyAssembly
 Stack discipline
 Translation to C

structstructss
 Alignment/padding
 Assembly

CachingCaching
 Blocking
 Miss rate analysis
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Floating point

RepresentationRepresentation
 Value: (-1)^s * M * 2^E
 Bias: 2^(k - 1) - 1
 Denormalized: E = 1 - bias
 Normalized: E = exp - bias
 Special values: infinities, NaN

Conversion examplesConversion examples
 1 sign bit, 3 exponent bits, 3 fraction bits

Convert 0 101 101 to decimal fraction
Convert -43/32 to floating point
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Floating point (2)

Conversion example solutionsConversion example solutions
 0 101 101  13/2→
 -43/32  → 1 011 011

Food for thoughtFood for thought
 What happens when the number of exponent bits increases?
 What happens when the number of fraction bits increases?
 Why can't every real be represented in floating point?
 What happens to resolution as absolute value increases?
 If a number is greater than 1, is it normalized?  Converse?
 Why not use fixed point instead?
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Floating point

Questions?Questions?
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Assembly

Special registersSpecial registers
 Stack pointer

%esp, %rsp
 Frame pointer

%ebp, sometimes %rbp
 Program counter

%eip, %rip
 Return value

%eax, %rax
 Arguments (x86-64)

%rdi, %rsi, etc.

InstructionsInstructions
 Addressing

 lea, mov
 Arithmetic

add, sub, imul, idiv
 Stack manipulation

push, pop, leave
 Local jumps

cmp, test
 jmp, je, jg, jle, etc.

 Procedure calls
call, ret
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Assembly (2)

What is the difference between lea and mov?What is the difference between lea and mov?
 mov can access memory

mov 8(%rsp), %rax  %rax = *(void **)(%rsp + 8)→

 lea is arithmetic
 lea 8(%rsp), %rax  %rax = %rsp + 8→

What do push and pop do?What do push and pop do?
 Inverse operations
 Both manipulate the stack
 Both are analogous to two instructions

push %rax  sub $8, %rsp; mov %rax, (%rsp)→
pop %rax  mov (%rsp), %rax; add $8, %rsp→
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Assembly (3)

What does leave do?What does leave do?
 Unallocates stack frame
 Akin to two instructions

 leave  mov %ebp, %esp; pop %ebp→
Draw a stack diagram

What do call and ret do?What do call and ret do?
 Procedure calls
 Inverse operations
 Both manipulate the stack

call 0xcafebabe  push %eip; jmp 0xcafebabe→
 ret  pop %eip→
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Assembly (4)

Assembly control flow cookbookAssembly control flow cookbook
 Assume x is a C variable whose value is in %eax
 To test if x is equal to zero

 test %eax, %eax
Use with je (sometimes jz)

 To test if x (signed) is greater than 15213
cmp $15213, %eax
Use with jg

 To test if x (unsigned) is greater than 15213
cmp $15213, %eax
Use with ja

 In general
 test is like and—only sets condition codes
cmp is like sub—only sets condition codes
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Assembly (5)
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Assembly (6)

break;

break;

break;

0x400470

0x40048a

0x40048a

0x400477

0x40047c

0x40048a

0x400482

0x40048a

0x400482 0x400487
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Assembly

Questions?Questions?
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structs

Data type size v. alignmentData type size v. alignment
 These are not the same!
 For example, on 32-bit x86 Linux, a double is eight bytes 

wide but has four-byte alignment

x86 v. x86-64x86 v. x86-64
 Obviously, pointer width is different
 Some other primitives change widths

Windows v. LinuxWindows v. Linux
 Linux alignment rules are byzantine; refer to the cheat sheet
 Windows rule of thumb: k-byte primitives are k-byte aligned
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structs (2)

Aggregate typesAggregate types
 On any system, the 

alignment requirement of 
an aggregate type is equal 
to the longest alignment 
requirement of its member 
primitives

 structs are not primitives
 Arrays are not primitives

On 32-bit x86 LinuxOn 32-bit x86 Linux
 sizeof(struct foo): 24
 sizeof(struct bar): 48

struct foo
{
    char a;
    int b;
    double c;
    char d[5];
};

struct bar
{
    int a;
    double b;
    long double c;
    struct foo d;
};



– 17 – 15-213, S’12

structs (3)

AssemblyAssembly
 Assume x is a C variable 

whose value is in %eax
 Assume f is an instance 

of struct foo whose 
address is in %edi

 x = f.d;
 lea 16(%edi), %eax

 x = f.d[0];
mov 16(%edi), %al

 x = f.d[3];
mov 19(%edi), %al

struct foo
{
    char a;
    int b;
    double c;
    char d[5];
};
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structs

Questions?Questions?
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Caching

Dimensions: S, E, BDimensions: S, E, B
 S: Number of sets
 E: Associativity—number of lines per set
 B: Block size—number of bytes per block (1 block per line)

Dissecting a memory addressDissecting a memory address
 s: log_2(S)
 b: log_2(B)
 t: [number of bits in address] - (s + b)
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Caching (2)
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Caching (3)
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Caching (4)
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Caching (5)

m
m
m
m

h
h

h
h h

h
h
h h

h
h
h h

h
h
h h

h
h
h h

h
h
h h

h
h
h

1/8



– 24 – 15-213, S’12

Caching (6)

Food for thoughtFood for thought
 Why do caches exist?  Why do they help?
 Why does the tag go in the front?  Why not the set index?
 Why not have tons of lines per set?
 Why have main memory at all?  Why not have 4+ GiB of 

cache if it is so fast?
 Why is LRU so popular?  What does it approximate?
 True or false: A single memory dereference can result in at 

most one cache miss.
 True or false: A memory address can only ever be mapped 

to one particular line of a set.
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Caching

Questions?Questions?
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Life

Questions?Questions?
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Announcements

ExamExam
 Grading party Tuesday night
 Scores should be out soon after exam

Office hoursOffice hours
 Canceled Tuesday through Thursday
 Capacity to be doubled during assignment weeks
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