
Introduction to
Computer Systems

Topics:Topics:
 Assembly
 Stack discipline
 Structs/alignment
 Caching

CS 213 S ’12rec8.pdf

15-213
“The Class That Gives CMU Its Zip!”

Taerim Kim
March 5, 2012

– 2 – 15-213, S’12

Midterm

What?What?
 Everything through caching

Where?Where?
 UC McConomy

When?When?
 1:30pm – 2:50pm, Tuesday, March 6

Who?Who?
 You

Why? D:Why? D:
 20 percent of your final grade

Relax—you get a cheat sheetRelax—you get a cheat sheet

– 3 – 15-213, S’12

Brief overview of exam topics

Data representationData representation
 Integers
 Floating point
 Arrays
 Structs

AssemblyAssembly
 Registers
 Memory addressing
 Control flow
 Stack discipline

CachingCaching
 Locality
 Dimensions
 Tag, set index, block

offset
 Eviction policy
 Blocking

– 4 – 15-213, S’12

By request

Floating pointFloating point
 Representation
 Conversion

AssemblyAssembly
 Stack discipline
 Translation to C

structstructss
 Alignment/padding
 Assembly

CachingCaching
 Blocking
 Miss rate analysis

– 5 – 15-213, S’12

Floating point

RepresentationRepresentation
 Value: (-1)^s * M * 2^E
 Bias: 2^(k - 1) - 1
 Denormalized: E = 1 - bias
 Normalized: E = exp - bias
 Special values: infinities, NaN

Conversion examplesConversion examples
 1 sign bit, 3 exponent bits, 3 fraction bits

Convert 0 101 101 to decimal fraction
Convert -43/32 to floating point

– 6 – 15-213, S’12

Floating point (2)

Conversion example solutionsConversion example solutions
 0 101 101 13/2→
 -43/32 → 1 011 011

Food for thoughtFood for thought
 What happens when the number of exponent bits increases?
 What happens when the number of fraction bits increases?
 Why can't every real be represented in floating point?
 What happens to resolution as absolute value increases?
 If a number is greater than 1, is it normalized? Converse?
 Why not use fixed point instead?

– 7 – 15-213, S’12

Floating point

Questions?Questions?

– 8 – 15-213, S’12

Assembly

Special registersSpecial registers
 Stack pointer

%esp, %rsp
 Frame pointer

%ebp, sometimes %rbp
 Program counter

%eip, %rip
 Return value

%eax, %rax
 Arguments (x86-64)

%rdi, %rsi, etc.

InstructionsInstructions
 Addressing

 lea, mov
 Arithmetic

add, sub, imul, idiv
 Stack manipulation

push, pop, leave
 Local jumps

cmp, test
 jmp, je, jg, jle, etc.

 Procedure calls
call, ret

– 9 – 15-213, S’12

Assembly (2)

What is the difference between lea and mov?What is the difference between lea and mov?
 mov can access memory

mov 8(%rsp), %rax %rax = *(void **)(%rsp + 8)→

 lea is arithmetic
 lea 8(%rsp), %rax %rax = %rsp + 8→

What do push and pop do?What do push and pop do?
 Inverse operations
 Both manipulate the stack
 Both are analogous to two instructions

push %rax sub $8, %rsp; mov %rax, (%rsp)→
pop %rax mov (%rsp), %rax; add $8, %rsp→

– 10 – 15-213, S’12

Assembly (3)

What does leave do?What does leave do?
 Unallocates stack frame
 Akin to two instructions

 leave mov %ebp, %esp; pop %ebp→
Draw a stack diagram

What do call and ret do?What do call and ret do?
 Procedure calls
 Inverse operations
 Both manipulate the stack

call 0xcafebabe push %eip; jmp 0xcafebabe→
 ret pop %eip→

– 11 – 15-213, S’12

Assembly (4)

Assembly control flow cookbookAssembly control flow cookbook
 Assume x is a C variable whose value is in %eax
 To test if x is equal to zero

 test %eax, %eax
Use with je (sometimes jz)

 To test if x (signed) is greater than 15213
cmp $15213, %eax
Use with jg

 To test if x (unsigned) is greater than 15213
cmp $15213, %eax
Use with ja

 In general
 test is like and—only sets condition codes
cmp is like sub—only sets condition codes

– 12 – 15-213, S’12

Assembly (5)

– 13 – 15-213, S’12

Assembly (6)

break;

break;

break;

0x400470

0x40048a

0x40048a

0x400477

0x40047c

0x40048a

0x400482

0x40048a

0x400482 0x400487

– 14 – 15-213, S’12

Assembly

Questions?Questions?

– 15 – 15-213, S’12

structs

Data type size v. alignmentData type size v. alignment
 These are not the same!
 For example, on 32-bit x86 Linux, a double is eight bytes

wide but has four-byte alignment

x86 v. x86-64x86 v. x86-64
 Obviously, pointer width is different
 Some other primitives change widths

Windows v. LinuxWindows v. Linux
 Linux alignment rules are byzantine; refer to the cheat sheet
 Windows rule of thumb: k-byte primitives are k-byte aligned

– 16 – 15-213, S’12

structs (2)

Aggregate typesAggregate types
 On any system, the

alignment requirement of
an aggregate type is equal
to the longest alignment
requirement of its member
primitives

 structs are not primitives
 Arrays are not primitives

On 32-bit x86 LinuxOn 32-bit x86 Linux
 sizeof(struct foo): 24
 sizeof(struct bar): 48

struct foo
{
 char a;
 int b;
 double c;
 char d[5];
};

struct bar
{
 int a;
 double b;
 long double c;
 struct foo d;
};

– 17 – 15-213, S’12

structs (3)

AssemblyAssembly
 Assume x is a C variable

whose value is in %eax
 Assume f is an instance

of struct foo whose
address is in %edi

 x = f.d;
 lea 16(%edi), %eax

 x = f.d[0];
mov 16(%edi), %al

 x = f.d[3];
mov 19(%edi), %al

struct foo
{
 char a;
 int b;
 double c;
 char d[5];
};

– 18 – 15-213, S’12

structs

Questions?Questions?

– 19 – 15-213, S’12

Caching

Dimensions: S, E, BDimensions: S, E, B
 S: Number of sets
 E: Associativity—number of lines per set
 B: Block size—number of bytes per block (1 block per line)

Dissecting a memory addressDissecting a memory address
 s: log_2(S)
 b: log_2(B)
 t: [number of bits in address] - (s + b)

– 20 – 15-213, S’12

Caching (2)

– 21 – 15-213, S’12

Caching (3)

m
m
m
m

m m m m m m m
m

m
mm

m

mm

m
mm

m

mm

m
mm

m

mm

m
m

1

– 22 – 15-213, S’12

Caching (4)

– 23 – 15-213, S’12

Caching (5)

m
m
m
m

h
h

h
h h

h
h
h h

h
h
h h

h
h
h h

h
h
h h

h
h
h h

h
h
h

1/8

– 24 – 15-213, S’12

Caching (6)

Food for thoughtFood for thought
 Why do caches exist? Why do they help?
 Why does the tag go in the front? Why not the set index?
 Why not have tons of lines per set?
 Why have main memory at all? Why not have 4+ GiB of

cache if it is so fast?
 Why is LRU so popular? What does it approximate?
 True or false: A single memory dereference can result in at

most one cache miss.
 True or false: A memory address can only ever be mapped

to one particular line of a set.

– 25 – 15-213, S’12

Caching

Questions?Questions?

– 26 – 15-213, S’12

Life

Questions?Questions?

– 27 – 15-213, S’12

Announcements

ExamExam
 Grading party Tuesday night
 Scores should be out soon after exam

Office hoursOffice hours
 Canceled Tuesday through Thursday
 Capacity to be doubled during assignment weeks

– 28 – 15-213, S’12

	Introduction to Computer Systems
	Midterm
	Brief overview of exam topics
	By request
	Floating point
	Floating point (2)
	Floating point questions
	Assembly
	Assembly (2)
	Assembly (3)
	Assembly (4)
	Assembly (5)
	Assembly (6)
	Assembly questions
	structs
	structs (2)
	structs (3)
	structs questions
	Caching
	Caching (2)
	Caching (3)
	Caching (4)
	Caching (5)
	Caching (6)
	Caching questions
	Life questions
	Announcements
	GTFO

