
Introduction to
Computer Systems

Topics:Topics:
 Assembly
 Stack discipline
 Structs/alignment
 Caching

CS 213 S ’12rec8.pdf

15-213
“The Class That Gives CMU Its Zip!”

Taerim Kim
March 5, 2012

– 2 – 15-213, S’12

Midterm

What?What?
 Everything through caching

Where?Where?
 UC McConomy

When?When?
 1:30pm – 2:50pm, Tuesday, March 6

Who?Who?
 You

Why? D:Why? D:
 20 percent of your final grade

Relax—you get a cheat sheetRelax—you get a cheat sheet

– 3 – 15-213, S’12

Brief overview of exam topics

Data representationData representation
 Integers
 Floating point
 Arrays
 Structs

AssemblyAssembly
 Registers
 Memory addressing
 Control flow
 Stack discipline

CachingCaching
 Locality
 Dimensions
 Tag, set index, block

offset
 Eviction policy
 Blocking

– 4 – 15-213, S’12

By request

Floating pointFloating point
 Representation
 Conversion

AssemblyAssembly
 Stack discipline
 Translation to C

structstructss
 Alignment/padding
 Assembly

CachingCaching
 Blocking
 Miss rate analysis

– 5 – 15-213, S’12

Floating point

RepresentationRepresentation
 Value: (-1)^s * M * 2^E
 Bias: 2^(k - 1) - 1
 Denormalized: E = 1 - bias
 Normalized: E = exp - bias
 Special values: infinities, NaN

Conversion examplesConversion examples
 1 sign bit, 3 exponent bits, 3 fraction bits

Convert 0 101 101 to decimal fraction
Convert -43/32 to floating point

– 6 – 15-213, S’12

Floating point (2)

Conversion example solutionsConversion example solutions
 0 101 101 13/2→
 -43/32 → 1 011 011

Food for thoughtFood for thought
 What happens when the number of exponent bits increases?
 What happens when the number of fraction bits increases?
 Why can't every real be represented in floating point?
 What happens to resolution as absolute value increases?
 If a number is greater than 1, is it normalized? Converse?
 Why not use fixed point instead?

– 7 – 15-213, S’12

Floating point

Questions?Questions?

– 8 – 15-213, S’12

Assembly

Special registersSpecial registers
 Stack pointer

%esp, %rsp
 Frame pointer

%ebp, sometimes %rbp
 Program counter

%eip, %rip
 Return value

%eax, %rax
 Arguments (x86-64)

%rdi, %rsi, etc.

InstructionsInstructions
 Addressing

 lea, mov
 Arithmetic

add, sub, imul, idiv
 Stack manipulation

push, pop, leave
 Local jumps

cmp, test
 jmp, je, jg, jle, etc.

 Procedure calls
call, ret

– 9 – 15-213, S’12

Assembly (2)

What is the difference between lea and mov?What is the difference between lea and mov?
 mov can access memory

mov 8(%rsp), %rax %rax = *(void **)(%rsp + 8)→

 lea is arithmetic
 lea 8(%rsp), %rax %rax = %rsp + 8→

What do push and pop do?What do push and pop do?
 Inverse operations
 Both manipulate the stack
 Both are analogous to two instructions

push %rax sub $8, %rsp; mov %rax, (%rsp)→
pop %rax mov (%rsp), %rax; add $8, %rsp→

– 10 – 15-213, S’12

Assembly (3)

What does leave do?What does leave do?
 Unallocates stack frame
 Akin to two instructions

 leave mov %ebp, %esp; pop %ebp→
Draw a stack diagram

What do call and ret do?What do call and ret do?
 Procedure calls
 Inverse operations
 Both manipulate the stack

call 0xcafebabe push %eip; jmp 0xcafebabe→
 ret pop %eip→

– 11 – 15-213, S’12

Assembly (4)

Assembly control flow cookbookAssembly control flow cookbook
 Assume x is a C variable whose value is in %eax
 To test if x is equal to zero

 test %eax, %eax
Use with je (sometimes jz)

 To test if x (signed) is greater than 15213
cmp $15213, %eax
Use with jg

 To test if x (unsigned) is greater than 15213
cmp $15213, %eax
Use with ja

 In general
 test is like and—only sets condition codes
cmp is like sub—only sets condition codes

– 12 – 15-213, S’12

Assembly (5)

– 13 – 15-213, S’12

Assembly (6)

break;

break;

break;

0x400470

0x40048a

0x40048a

0x400477

0x40047c

0x40048a

0x400482

0x40048a

0x400482 0x400487

– 14 – 15-213, S’12

Assembly

Questions?Questions?

– 15 – 15-213, S’12

structs

Data type size v. alignmentData type size v. alignment
 These are not the same!
 For example, on 32-bit x86 Linux, a double is eight bytes

wide but has four-byte alignment

x86 v. x86-64x86 v. x86-64
 Obviously, pointer width is different
 Some other primitives change widths

Windows v. LinuxWindows v. Linux
 Linux alignment rules are byzantine; refer to the cheat sheet
 Windows rule of thumb: k-byte primitives are k-byte aligned

– 16 – 15-213, S’12

structs (2)

Aggregate typesAggregate types
 On any system, the

alignment requirement of
an aggregate type is equal
to the longest alignment
requirement of its member
primitives

 structs are not primitives
 Arrays are not primitives

On 32-bit x86 LinuxOn 32-bit x86 Linux
 sizeof(struct foo): 24
 sizeof(struct bar): 48

struct foo
{
 char a;
 int b;
 double c;
 char d[5];
};

struct bar
{
 int a;
 double b;
 long double c;
 struct foo d;
};

– 17 – 15-213, S’12

structs (3)

AssemblyAssembly
 Assume x is a C variable

whose value is in %eax
 Assume f is an instance

of struct foo whose
address is in %edi

 x = f.d;
 lea 16(%edi), %eax

 x = f.d[0];
mov 16(%edi), %al

 x = f.d[3];
mov 19(%edi), %al

struct foo
{
 char a;
 int b;
 double c;
 char d[5];
};

– 18 – 15-213, S’12

structs

Questions?Questions?

– 19 – 15-213, S’12

Caching

Dimensions: S, E, BDimensions: S, E, B
 S: Number of sets
 E: Associativity—number of lines per set
 B: Block size—number of bytes per block (1 block per line)

Dissecting a memory addressDissecting a memory address
 s: log_2(S)
 b: log_2(B)
 t: [number of bits in address] - (s + b)

– 20 – 15-213, S’12

Caching (2)

– 21 – 15-213, S’12

Caching (3)

m
m
m
m

m m m m m m m
m

m
mm

m

mm

m
mm

m

mm

m
mm

m

mm

m
m

1

– 22 – 15-213, S’12

Caching (4)

– 23 – 15-213, S’12

Caching (5)

m
m
m
m

h
h

h
h h

h
h
h h

h
h
h h

h
h
h h

h
h
h h

h
h
h h

h
h
h

1/8

– 24 – 15-213, S’12

Caching (6)

Food for thoughtFood for thought
 Why do caches exist? Why do they help?
 Why does the tag go in the front? Why not the set index?
 Why not have tons of lines per set?
 Why have main memory at all? Why not have 4+ GiB of

cache if it is so fast?
 Why is LRU so popular? What does it approximate?
 True or false: A single memory dereference can result in at

most one cache miss.
 True or false: A memory address can only ever be mapped

to one particular line of a set.

– 25 – 15-213, S’12

Caching

Questions?Questions?

– 26 – 15-213, S’12

Life

Questions?Questions?

– 27 – 15-213, S’12

Announcements

ExamExam
 Grading party Tuesday night
 Scores should be out soon after exam

Office hoursOffice hours
 Canceled Tuesday through Thursday
 Capacity to be doubled during assignment weeks

– 28 – 15-213, S’12

	Introduction to Computer Systems
	Midterm
	Brief overview of exam topics
	By request
	Floating point
	Floating point (2)
	Floating point questions
	Assembly
	Assembly (2)
	Assembly (3)
	Assembly (4)
	Assembly (5)
	Assembly (6)
	Assembly questions
	structs
	structs (2)
	structs (3)
	structs questions
	Caching
	Caching (2)
	Caching (3)
	Caching (4)
	Caching (5)
	Caching (6)
	Caching questions
	Life questions
	Announcements
	GTFO

