Great Theoretical Ideas In Computer Science

John Lafferty

CS 15-251

Fall 2006

Lecture 8

Sept 21, 2006

Carnegie Mellon University

Counting III: Pascal's Triangle, Polynomials, and Vector Programs

Choice tree for terms of (1+X)3

Combine like terms to get $1 + 3X + 3X^2 + X^3$

The Binomial Formula

$$(1+X)^{n} = \binom{n}{0} + \binom{n}{1}X + \binom{n}{2}X^{2} + \dots + \binom{n}{k}X^{k} + \dots + \binom{n}{n}X^{n}$$
Binomial Coefficients

binomial expression

The Binomial Formula

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

One polynomial, two representations

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

"Product form" or "Generating form"

"Additive form" or "Expanded form"

The number of ways to rearrange the letters in the word BANANA.

Multinomial Coefficients

$$\begin{pmatrix} n \\ k; n-k \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix}$$

The Multinomial Formula

Power Series Representation

$$(1+x)^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot x^{k}$$
"Closed form" or
"Generating form"
$$= \sum_{k=0}^{\infty} \binom{n}{k} \cdot x^{k}$$
Since $\binom{n}{k} = 0$ if $k > n$

"Power series" ("Taylor series") expansior

By playing these two representations against each other we obtain a new representation of a previous insight:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

Let x=1.

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

The number of subsets of an *n*-element set

By varying x, we can discover new identities

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

Let x = -1.

$$0 = \sum_{k=0}^{n} \binom{n}{k} \cdot (-1)^k$$

Equivalently,

$$\sum_{k \text{ even}}^{n} \binom{n}{k} = \sum_{k \text{ odd}}^{n} \binom{n}{k} = 2^{n-1}$$

The number of even-sized subsets of an *n* element set is the same as the number of odd-sized subsets.

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

Let x = -1.

$$0 = \sum_{k=0}^{n} \binom{n}{k} \cdot (-1)^k$$

Equivalently,

$$\sum_{k \text{ even}}^{n} \binom{n}{k} = \sum_{k \text{ odd}}^{n} \binom{n}{k} = 2^{n-1}$$

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

$$\sum_{k \text{ even}}^{n} \binom{n}{k} = \sum_{k \text{ odd}}^{n} \binom{n}{k} = 2^{n-1}$$

Let E_n be the set of binary strings of length n with an even number of ones.

We gave an <u>algebraic</u> proof that

$$|\mathcal{O}_n| = |\mathcal{E}_n|$$

A Combinatorial Proof

Let O_n be the set of binary strings of length n with an odd number of ones.

Let E_n be the set of binary strings of length n with an even number of ones.

A <u>combinatorial</u> proof must construct a one-toone correspondence between O_n and E_n

An attempt at a correspondence

Let f_n be the function that takes an n-bit string and flips all its bits.

f_n is clearly a one-to-one and onto function

for odd n. E.g. in f_7 we have

 $0010011 \rightarrow 1101100$

 $1001101 \rightarrow 0110010$

...but do even n work? In f₆ we have

110011 → *001100*

101010 → *010101*

Uh oh. Complementing maps evens to evens!

A correspondence that works for all n

Let f_n be the function that takes an n-bit string and flips only the first bit. For example,

 $0010011 \rightarrow 1010011$ $1001101 \rightarrow 0001101$

 $110011 \rightarrow 010011$ $101010 \rightarrow 001010$

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^k$$

The Binomial Formula

$$(1+X)^{0} = 1$$

$$(1+X)^{1} = 1 + 1X$$

$$(1+X)^{2} = 1 + 2X + 1X^{2}$$

$$(1+X)^{3} = 1 + 3X + 3X^{2} + 1X^{3}$$

$$(1+X)^{4} = 1 + 4X + 6X^{2} + 4X^{3} + 1X^{4}$$

Pascal's Triangle: k^{th} row are the coefficients of $(1+X)^k$

$$(1+X)^{0} = 1$$

$$(1+X)^{1} = 1 + 1X$$

$$(1+X)^{2} = 1 + 2X + 1X^{2}$$

$$(1+X)^{3} = 1 + 3X + 3X^{2} + 1X^{3}$$

$$(1+X)^{4} = 1 + 4X + 6X^{2} + 4X^{3} + 1X^{4}$$

kth Row Of Pascal's Triangle:

$$\binom{n}{0}$$
, $\binom{n}{1}$, $\binom{n}{2}$, ..., $\binom{n}{k}$, ... $\binom{n}{n}$

$$(1+X)^{0} =$$
 1
 $(1+X)^{1} =$ 1 + 1X
 $(1+X)^{2} =$ 1 + 2X + 1X²
 $(1+X)^{3} =$ 1 + 3X + 3X² + 1X³
 $(1+X)^{4} =$ 1 + 4X + 6X² + 4X³ + 1X⁴

Inductive definition of kth entry of nth row: Pascal(n,0) = Pascal(n,n) = 1;Pascal(n,k) = Pascal(n-1,k-1) + Pascal(n-1,k)

$$(1+X)^0 =$$
 1
 $(1+X)^1 =$ 1 + 1X
 $(1+X)^2 =$ 1 + 2X + 1X²
 $(1+X)^3 =$ 1 + 3X + 3X² + 1X³
 $(1+X)^4 =$ 1 + 4X + 6X² + 4X³ + 1X⁴

"Pascal's Triangle"

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} = 1$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2$$

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} = 1$$

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix} = 3$$

$$\begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3$$

$$\begin{pmatrix} 3 \\ 3 \end{pmatrix} = 1$$

Al-Karaji, Baghdad 953-1029

Chu Shin-Chieh 1303
The Precious Mirror of the Four Elements
... Known in Europe by 1529

Blaise Pascal 1654

Pascal's Triangle

Summing The Rows

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k} \qquad 1 \qquad = 1$$

$$1 + 2 + 1 \qquad = 4$$

$$1 + 3 + 3 + 1 \qquad = 8$$

$$1 + 4 + 6 + 4 + 1 \qquad = 16$$

$$1 + 5 + 10 + 10 + 5 + 1 \qquad = 32$$

$$1 + 6 + 15 + 20 + 15 + 6 + 1 = 64$$

$$\vdots \qquad \vdots \qquad \vdots$$

Summing on 1st Avenue

Summing on kth Avenue

1 1 1² 2² 1² 1² 3² 3² 1² 1 4 6 4 1 5 10 /10 5 1 1 6 15 20 15 6 1

Al-Karaji Squares

Pascal Mod 2

How many shortest routes from A to B?

Manhattan

There are $\binom{j+k}{k}$ shortest routes from (0,0) to (j,k).

Manhattan

There are $\binom{n}{k}$ shortest routes from (0,0) to (n-k,k).

Manhattan

There are $\binom{n}{k}$ shortest routes from (0,0) to Level n and k^{th} Avenue.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

By convention:

$$0! = 1$$
 (empty product = 1)
 $\binom{n}{k} = 1$ if $k = 0$
 $\binom{n}{k} = 0$ if $k < 0$ or $k > n$

Application (Al-Karaji):

$$\sum_{i=0}^{n} i^{2} = 1^{2} + 2^{2} + 3^{2} + \dots + n^{2}$$

$$= (1 \cdot 0 + 1) + (2 \cdot 1 + 2) + (3 \cdot 2 + 3) + \dots + (n(n-1) + n)$$

$$= 1 \cdot 0 + 2 \cdot 1 + 3 \cdot 2 + \dots + n(n-1) + \sum_{i=1}^{n} i$$

$$= 2 \left[\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \binom{5}{2} + \dots + \binom{n}{2} \right] + \binom{n+1}{2}$$

$$= 2 \binom{n+1}{3} + \binom{n+1}{2} = \frac{(2n+1)(n+1)n}{6}$$

Let's define a (parallel) programming language called VECTOR that operates on possibly infinite vectors of numbers. Each variable V^{\rightarrow} can be thought of as:

Let k stand for a scalar constant <k> will stand for the vector <k,0,0,0,...>

 $V \rightarrow T \rightarrow T$ means to add the vectors position-wise.

RIGHT(V^{\rightarrow}) means to shift every number in V^{\rightarrow} one position to the right and to place a 0 in position 0.

$$RIGHT(<1,2,3,...>) = <0,1,2,3,...>$$

Example:

Store

$$V^{\rightarrow} := \langle 6 \rangle;$$
 $V^{\rightarrow} = \langle 6,0,0,0,0,... \rangle$ $V^{\rightarrow} := RIGHT(V^{\rightarrow}) + \langle 42 \rangle;$ $V^{\rightarrow} = \langle 42,6,0,0,... \rangle$ $V^{\rightarrow} := RIGHT(V^{\rightarrow}) + \langle 2 \rangle;$ $V^{\rightarrow} = \langle 2,42,6,0,... \rangle$ $V^{\rightarrow} := RIGHT(V^{\rightarrow}) + \langle 13 \rangle;$ $V^{\rightarrow} = \langle 13,2,42,6,... \rangle$

$$V^{\rightarrow} = \langle 13, 2, 42, 6, 0, 0, 0, ... \rangle$$

Example:

Store

V→ := <1>;

 $V^{\rightarrow} = \langle 1, 0, 0, 0, ... \rangle$

Loop n times:

 $V^{\rightarrow} := V^{\rightarrow} + RIGHT(V^{\rightarrow}); V^{\rightarrow} = \langle 1,2,1,0,...\rangle$

 $V^{\rightarrow} = \langle 1, 1, 0, 0, ... \rangle$

 $V^{\rightarrow} = \langle 1, 3, 3, 1... \rangle$

Vector programs can be implemented by polynomials!

Programs ----> Polynomials

The vector $V^{\rightarrow} = \langle a_0, a_1, a_2, ... \rangle$ will be represented by the polynomial:

$$P_V = \sum_{i=0}^{i=\infty} a_i X^i$$

Formal Power Series

The vector $V \rightarrow = \langle a_0, a_1, a_2, ... \rangle$ will be represented by the formal power series:

$$P_V = \sum_{i=0}^{i=\infty} a_i X^i$$

$$V^{\rightarrow} = \langle a_0, a_1, a_2, \dots \rangle$$

$$P_V = \sum_{i=0}^{i=\infty} a_i X^i$$

$$V \rightarrow + T \rightarrow \text{ is represented by} \qquad (P_V + P_T)$$

RIGHT(
$$V^{\rightarrow}$$
) is represented by $(P_V X)$

Example:

$$P_{V} := 1;$$

Loop n times:

$$V^{\rightarrow} := V^{\rightarrow} + RIGHT(V^{\rightarrow});$$

$$P_V := P_V + P_V X;$$

Example:

$$P_{V} := 1;$$

Loop n times:

$$V^{\rightarrow} := V^{\rightarrow} + RIGHT(V^{\rightarrow});$$

$$P_{V} := P_{V} (1+ X);$$

Example:

$$V^{\rightarrow} := \langle 1 \rangle;$$
Loop n times:
$$V^{\rightarrow} := V^{\rightarrow} + RIGHT(V^{\rightarrow});$$

The Geometric Series

$$1 + X^{1} + X^{2} + X^{3} + ... + X^{n} + = \frac{1}{1 - X}$$

The Infinite Geometric Series

$$1 + X^{1} + X^{2} + X^{3} + ... + X^{n} + = \frac{1}{1 - X}$$

$$(X-1) (1 + X^{1} + X^{2} + X^{3} + ... + X^{n} + ...)$$

$$= X^{1} + X^{2} + X^{3} + ... + X^{n} + X^{n+1} +$$

$$- 1 - X^{1} - X^{2} - X^{3} - ... - X^{n-1} - X^{n} - X^{n+1} - ...$$

$$= 1$$

$$1 + aX^{1} + a^{2}X^{2} + a^{3}X^{3} + ... + a^{n}X^{n} + ... = \frac{1}{1 - aX}$$

Geometric Series (Linear Form)

$$(1 + aX^1 + a^2X^2 + ... + a^nX^n +) (1 + bX^1 + b^2X^2 + ... + b^nX^n +) =$$

(1 - aX)(1-bX)

Suppose we multiply this out to get a single, infinite polynomial.

What is an expression for C_n ?

$$(1 + aX^{1} + a^{2}X^{2} + ... + a^{n}X^{n} +) (1 + bX^{1} + b^{2}X^{2} + ... + b^{n}X^{n} +) = 1 + c_{1}X^{1} + ... + c_{k}X^{k} + ...$$

$$c_n =$$

$$a^{0}b^{n} + a^{1}b^{n-1} + ... a^{i}b^{n-i}... + a^{n-1}b^{1} + a^{n}b^{0}$$

$$(1 + aX^{1} + a^{2}X^{2} + ... + a^{n}X^{n} +) (1 + bX^{1} + b^{2}X^{2} + ... + b^{n}X^{n} +) =$$

$$1 + c_{1}X^{1} + ... + c_{k}X^{k} + ...$$

$$c_n = (n+1)(a^n)$$

 $a^{0}b^{n} + a^{1}b^{n-1} + ... a^{i}b^{n-i} ... + a^{n-1}b^{1} + a^{n}b^{0}$

$$a^{0}b^{n} + a^{1}b^{n-1} + ... \ a^{i}b^{n-i}... + a^{n-1}b^{1} + a^{n}b^{0} = a - b$$

$$(a-b) (a^{0}b^{n} + a^{1}b^{n-1} + ... a^{i}b^{n-i}... + a^{n-1}b^{1} + a^{n}b^{0})$$

$$= a^{1}b^{n} + ... a^{i+1}b^{n-i}... + a^{n}b^{1} + a^{n+1}b^{0}$$

$$- a^{0}b^{n+1} - a^{1}b^{n}... a^{i+1}b^{n-i}... - a^{n-1}b^{2} - a^{n}b^{1}$$

$$= -b^{n+1}$$

$$a^{n+1} - b^{n+1}$$

$$(1 + aX^{1} + a^{2}X^{2} + ... + a^{n}X^{n} +) (1 + bX^{1} + b^{2}X^{2} + ... + b^{n}X^{n} +) =$$

$$1 + c_{1}X^{1} + ... + c_{k}X^{k} + ...$$

$$c_n = a^{n+1} - b^{n+1}$$

$$a^{0}b^{n} + a^{1}b^{n-1} + ... a^{i}b^{n-i} ... + a^{n-1}b^{1} + a^{n}b^{0}$$

$$(1 + aX^{1} + a^{2}X^{2} + ... + a^{n}X^{n} +) (1 + bX^{1} + b^{2}X^{2} + ... + b^{n}X^{n} +) =$$

$$= \frac{1}{(1 - aX)(1 - bX)}$$

$$= \sum_{n=0..\infty} \frac{a^{n+1} - b^{n+1}}{a - b} X^{n}$$

$$= \sum_{n=0..\infty} (n+1)a^{n} X^{n}$$
when $a=b$

Geometric Series (Quadratic Form)

Study Bee

- Polynomials count
- · Binomial formula
- Multinomial coefficients
- Combinatorial proofs of binomial identities
- Vector programs
- · Geometric series