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Great Theoretical Ideas In Computer Science

Polynomials, Secret Sharing, 
And Error-Correcting Codes

 X3  X2 +  +  X1  + P(X) = 



Polynomials in one variable over the reals

P(x) = 3 x2 + 7 x – 2

Q(x) = x123 – ½ x25 + 19 x3 – 1

R(y) = 2y + √2

S(z) = z2 – z - 1

T(x) = 0

W(x) = π



Representing a polynomial

A degree-d polynomial is represented by its (d+1)
coefficients:
P(x) = ad xd + ad-1 xd-1 + … + a1 x1 + a0

The numbers ad, ad-1, …, a0 are the coefficients.

E.g.  P(x) = 3x4 – 7x2 + 12x – 19

Coefficients are:



Are we working over the reals?

We could work over any “field”
(set with addition, multiplication, division defined.)

E.g., we could work with the rationals, or the reals.

Or with Zp, the integers mod prime p.

In this lecture, we will work with Zp



The Set Zp for prime p

Zp = {0, 1, 2, …, p-1}

Zp
* = {1, 2, 3, …, p-1}



Simple Facts about Polynomials

Let P(x), Q(x) be two polynomials.

The sum P(x)+Q(x) is also a polynomial.
(i.e., polynomials are “closed under addition”)

Their product P(x)Q(x) is also a polynomial.
(“closed under multiplication”)

P(x)/Q(x) is not necessarily a polynomial.



Multiplying Polynomials

(x2+2x-1)(3x3+7x) 

= 3x5 + 7x3 + 6x4 + 14x2 – 3x3 – 7x

= 3x5 + 6x4 + 4x3 + 14x2 – 7x



Evaluating a polynomial

Suppose:
P(x) = ad xd + ad-1 xd-1 + … + a1 x1 + a0

E.g.  P(x) = 3x4 – 7x2 + 12x – 19

P(5) = 3×54 – 7×52 + 12×5 – 19

P(-1) = 3×(-1)4 – 7×(-1)2 + 12×(-1) – 19

P(0) = -19



The roots of a polynomial
Suppose:

P(x) = ad xd + ad-1 xd-1 + … + a1 x1 + a0

Definition: r is a “root” of P(x) if P(r) = 0

E.g., P(x) = 3x + 7 root = -(7/3).

P(x) = x2 – 2x + 1 roots = 1, 1

P(x) = 3x3 -10x2 + 10x – 2 roots = 1/3, 1, 2. 



Linear Polynomials
P(x) = ax + b

E.g., P(x) = 7x – 9 (over Z11)

One root: P(x) = ax + b = 0 ⇒ x = -b/a

E.g., root = (- (-9)/7) = 9 * 7^{-1} 
= 9 * 8 = 72
= 6 (mod 11).

Check: P(6) = 7*6 – 9 = 42 – 9 = 33 = 0 (mod 11)



The Single Most Important 
Fact About 

Low-degree Polynomials

A non-zero degree-d 
polynomial P(x) has

at most d roots.



If you give me pairs
(x1, y1), …, (xd+1, yd+1)

then there is at most one
degree-d polynomial P(x) 

such that:

P(xk) = yk for all k



Why?
Assume P(x) and Q(x) have degree at most d
Suppose x1, x2, …, xd+1 are d+1 points 
such that P(xk) = Q(xk) for all k = 1,2,…,d+1

Then P(x) = Q(x) for all values of x

Proof: Define R(x) = P(x) – Q(x)

R(x) has degree d

R(x) has d+1 roots, so it must be the zero 
polynomial



If you give me pairs
(x1, y1), …, (xd+1, yd+1)

then there is at most one
degree-d polynomial P(x) 

such that:

P(xk) = yk for all k



Hmm: at most one?

So perhaps there are no 
such degree-d polynomials 

with 

P(xk) = yk

for all the d+1 values of k



Lagrange Interpolation

Given any (d+1) pairs (x1, y1), (x2, y2), …, (xd+1, yd+1)

then there is exactly one
degree-d polynomial P(x) such that

P(xk) = yk for all k



k-th “Switch” polynomial

gk(x) = (x-x1)(x-x2)…(x-xk-1)(x-xk+1)…(x-xd+1)

Degree of gk(x) is:

gk(x) has d roots:

(xk-x1)(xk-x2)…(xk-xk-1)(xk-xk+1)…(xk-xd+1)gk(xk) =

For all i ≠ k, gk(xi) =

d

x1,…,xk-1,xk+1,…,xd+1

0

Given (d+1) pairs (x1, y1), (x2, y2), …, (xd+1, yd+1)



k-th “Switch” polynomial

gk(x) = (x-x1)(x-x2)…(x-xk-1)(x-xk+1)…(x-xd+1)

(x-x1)(x-x2)…(x-xk-1)(x-xk+1)…(x-xd+1)

(xk-x1)(xk-x2)…(xk-xk-1)(xk-xk+1)…(xk-xd+1)
hk(x) =

Given (d+1) pairs (x1, y1), (x2, y2), …, (xd+1, yd+1)

hk(xk) = 1

For all i ≠ k, hk(xi) = 0



The Lagrange Polynomial

P(x) = y1h1(x) + y2h2(x) + … + yd+1hd+1(x)

(x-x1)(x-x2)…(x-xk-1)(x-xk+1)…(x-xd+1)

(xk-x1)(xk-x2)…(xk-xk-1)(xk-xk+1)…(xk-xd+1)
hk(x) =

Given (d+1) pairs (x1, y1), (x2, y2), …, (xd+1, yd+1)

P(x) is the unique polynomial of degree d such 
that P(x1) = y1, P(x2) = y2, …, P(xd+1) = yd+1



Example
Input: (5,1), (6,2), (7,9)

Switch polynomials:

h1(x) = (x-6)(x-7)/(5-6)(5-7)= ½ (x-6)(x-7)

h2(x) = (x-5)(x-7)/(6-5)(6-7)= - (x-5)(x-7)

h3(x) = (x-5)(x-6)/(7-5)(7-6)= ½ (x-5)(x-6)

P(x) =
= (6x2 -77x + 237)/2

1 × h1(x) + 2 × h2(x) + 9 × h3(x)



Two different representations

P(x) = ad xd + ad-1 xd-1 + … + a1 x1 + a0

can be represented either by

a) d+1 coefficients
ad, ad-1, …, a2, a1, a0

b) Its value at any d+1 points
P(x1), P(x2), …, P(xd), P(xd+1)

(e.g., P(0), P(1), P(2), …, P(d+1).)



Converting Between The 
Two Representations

Coefficients to Evaluation:

Evaluation to Coefficients:

Evaluate P(x) at d+1 points

Use Lagrange Interpolation



Difference In The Representations

Adding two polynomials:

P(x) can be represented by:
a) d+1 coefficients ad, ad-1, …, a1, a0
b) Value at d+1 points P(x1), …, P(xd+1)

Both representations are equally good, since in 
both cases the new polynomial can be 
represented by the sum of the representations



Multiplying two polynomials:
Representation (a) requires (d+1)2

multiplications

Difference In The Representations

P(x) can be represented by:
a) d+1 coefficients ad, ad-1, …, a1, a0
b) Value at d+1 points P(x1), …, P(xd+1)

Representation (b) just requires (d+1) 
additions (if the two polynomials are already 
evaluated at the same points)



Evaluating the polynomial at some point:

Difference In The Representations

P(x) can be represented by:
a) d+1 coefficients ad, ad-1, …, a1, a0
b) Value at d+1 points P(x1), …, P(xd+1)

Is easy with representation (a)

Requires Lagrange interpolation with (b)



The value-representation 
is tolerant to “erasures”

I want to send you a polynomial P(x) of degree d.

Suppose your mailer corrupts my emails once in a while.

Now hang on a minute!

Why would I ever want to send you 
a polynomial?



The value-representation 
is tolerant to “erasures”

I want to send you a polynomial P(x) of degree d.

Suppose your mailer drops my emails once in a while.

Say, I wanted to send you a message
“hello”

I could write it as
“8 5 12 12 15”

and hence as
8 x4 + 5 x3 + 12 x2 + 12 x + 15



The value-representation 
is tolerant to “erasures”

I want to send you a polynomial P(x) of degree d.

Suppose your mailer drops my emails once in a while.

I could evaluate P(x) at (say) n > d+1 points and send
<k, P(k)>

to you for all k = 1, 2,…,d, …,n.

As long you get at least (d+1) of these, 
choose any (d+1) of the ones you got, and reconstruct P(x).



But is it 
tolerant to “corruption” ?

I want to send you a polynomial P(x).

Suppose your mailer corrupts my emails once in a while.

E.g., suppose P(x) = 2x2 + 1, and I chose n = 4.
I evaluated P(0) = 1, P(1) = 3, P(2) = 9, P(3) = 19.

So I sent you <0,1>, <1, 3>, <2, 9>, <3,19>

Corrupted email says <0,1>, <1, 2>, <2, 9>, <3, 19>

You choose <0,1>, <1,2>, <2,9>
and get Q(x) = 



Error-Detecting Representation
The above scheme does detect errors!

If we send the value of degree-d polynomial P(x) 
at n ≥ d+1 different points, 

<x1, P(x1)>,    <x2, P(x2)>,    … , <xn, P(xn)>

then we can detect corruptions 
as long as there fewer than (n-d) of them

Why? If only n-d-1 corruptions, then d+1 correct points!



Also Error Correcting Representation

As long as fewer than (n-d)/2 corruptions
then can get back the original polynomial P(x) !!!

(We don’t need to know which ones are corrupted. 
Just that there are < (n-d)/2 corruptions.)

We can do this in class if we have enough time at the end…

Error Correcting Codes (ECCs)



And that’s not all:
polynomials are amazing
in other ways as well…



Secret Sharing

Missile has random secret number S encoded into its
hardware. It will not arm without being given S. 

n officers have memorized a private, individual “share”.

Any k out of n of them should be able to assemble their 
shares so as to obtain S.

Any ≤ k-1 of them should not be able to jointly determine 
any information about S.



A k-out-of-n secret sharing scheme

Let S be a random “secret” from Zp

Want to give shares Z1, Z2, …, Zn to the n officers such 
that:

a) if we have k of the Zi’s, then we can find out S.

b) if we have k-1 Zi’s, then any secret S is equally 
likely to have produced this set of Zi’s.



Our k-out-of-n S.S.S.

Let S be a random “secret” from Zp

Pick k-1 random coefficients R1, R2, …, Rk-1 from Zp

Let P(x) = Rk-1 xk-1 + Rk-2 xk-2 + … + R1 x1 + S

For any j in {1,2,…,n}, officer j’s share Zj = P(j)



Our k-out-of-n S.S.S.

Let S be a random “secret” from Zp
Pick k-1 random coefficients R1, R2, …, Rk-1 from Zp
Let P(x) = Rk-1 xk-1 + Rk-2 xk-2 + … + R1 x1 + S
For any j in {1,2,…,n}, officer j’s share Zj = P(j)

P(0) = where P hits y-axis = S.

P(x) chosen to be a random degree k-1 polynomial 
given that f hits the y-axis at S. 

Since S is random, each such polynomial is equally 
likely to be chosen



Our k-out-of-n S.S.S.
Let S be a random “secret” from Zp
Pick k-1 random coefficients R1, R2, …, Rk-1 from Zp
Let P(x) = Rk-1 xk-1 + Rk-2 xk-2 + … + R1 x1 + S
For any j in {1,2,…,n}, officer j’s share Zj = P(j)

If k officers get together, they can figure out P(x)
And then evaluate P(0) = S.



Our k-out-of-n S.S.S.

Let S be a random “secret” from Zp
Pick k-1 random coefficients R1, R2, …, Rk-1 from Zp
Let P(x) = Rk-1 xk-1 + Rk-2 xk-2 + … + R1 x1 + S
For any j in {1,2,…,n}, officer j’s share Zj = P(j)

If k-1 officers get together, they know P(x) at k-1 
different points.

For each value of S’, we can get a unique polynomial P’
passing through their points, and P’(0) = S’.

And so each S’ equally likely!!!



Study Bee

Polynomials
Fundamental Theorem of polynomials:

Degree-d polynomial has at most d roots.
Two different deg-d polys agree on ≤ d points.

Lagrange Interpolation:
Given d+1 pairs (xk, yk), can find unique poly P
such that P(xk) = yk for all these k.
Gives us alternative representation for polys.

Many Applications of this representation
Error detecting/correcting codes
Secret sharing.


