15-251

Great Theoretical Ideas in Computer Science

Algebraic Structures: Group Theory

Lecture 15 (October 14, 2008)

Today we are going to study the abstract properties of binary operations

Rotating a Square in Space

Imagine we can pick up the square, rotate it in any way we want, and then put it back on the white frame

Symmetries of the Square $Y_{SQ} = \{ R_0, R_{90}, R_{180}, R_{270}, F_1, F_2, F_2, F_3 \}$

	R	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F,	F
(R_0)	R 0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F⁄	F、
R ₉₀	R ₉₀	R ₁₈₀	R ₂₇₀	R ₀	F⁄	F⁄	F	F _
R ₁₈₀	R ₁₈₀	R ₂₇₀	R ₀	R ₉₀	F	F	F、	F⁄
R ₂₇₀	R ₂₇₀	R_0	R_{90}	R ₁₈₀	F⁄	F	F _	F
F	F	F/	F_	F	R ₀	R ₁₈₀	R ₉₀	R ₂₇₀
F_	F_	F、	F	F⁄	R ₁₈₀	R ₀	R ₂₇₀	R ₉₀
F,	F⁄	F_	F	F	R ₂₇₀	R ₉₀	R ₀	R ₁₈₀
F	F	F	F⁄	F_	R ₉₀	R ₂₇₀	R ₁₈₀	R ₀

Some Formalism

If S is a set, $S \times S$ is:

the set of all (ordered) pairs of elements of S

 $S \times S = \{ (a,b) \mid a \in S \text{ and } b \in S \}$

• •

If S has n elements, how many elements does S \times S have? n^2

Formally, \bullet is a function from $Y_{SQ} \times Y_{SQ}$ to Y_{SQ}

$$\mathbf{Y}_{SQ} \times \mathbf{Y}_{SQ} \rightarrow \mathbf{Y}_{SQ}$$

As shorthand, we write •(a,b) as "a • b"

Binary Operations

"•" is called a binary operation on Y_{so}

Definition: A binary operation on a set S is a function $\bullet : \underline{S \times S} - (S)$

Example:

The function f: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by f(x,y) = xy + y $g(x,y) = \sqrt{x+y}$ is a binary operation on \mathbb{N} $x \to b = a$

Associativity

A binary operation ♦ on a set S is associative if:

for all $a,b,c \in S$, $(a \bullet b) \bullet c = a \bullet (b \bullet c)$

Examples:

Is f: $\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ defined by f(x,y) = xy + y associative?

(ab + b)c + c = a(bc + c) + (bc + c)? NO!

Is the operation • on the set of symmetries of the square associative? YES!

Commutativity

A binary operation \blacklozenge on a set S is commutative if

For all $a, b \in S$, $a \neq b = b \neq a$

Is the operation \bullet on the set of symmetries of the square commutative? NO!

 $\mathbf{R}_{90} \bullet \mathbf{F}_{|} \neq \mathbf{F}_{|} \bullet \mathbf{R}_{90}$

Identities

R₀ is like a null motion

Is this true: $\forall a \in Y_{SQ}$, $a \bullet R_0 = R_0 \bullet a = a$? YES!

 R_{0} is called the identity of ${\mbox{ \bullet }}$ on Y_{SQ}

In general, for any binary operation \blacklozenge on a set S, an element $e \in S$ such that for all $a \in S$, $e \blacklozenge a = a \blacklozenge e = a$ is called an identity of \blacklozenge on S

Inverses

Definition: The inverse of an element $a \in Y_{SQ}$ is an element b such that:

 $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \mathbf{R}_0$

Examples:

R₉₀ inverse: R₂₇₀

R₁₈₀ inverse: R₁₈₀

F₁ inverse: F₁

Groups

A group G is a pair $(S, \check{\bullet})$, where S is a set and \bullet is a binary operation on S such that:

1. • is associative

2. (Identity) There exists an element $e \in S$ such that: $e \diamond a = a \diamond e = a$, for all $a \in S$

 $\boldsymbol{e}: S \times S \longrightarrow S$

3. (Inverses) For every $a \in S$ there is $b \in S$ such that: $a \diamond b = b \diamond a = e$

Commutative or "Abelian" Groups

If $G = (S, \mathbf{A})$ and \mathbf{A} is commutative, then G is called a commutative group

remember, "commutative" means a ♦ b = b ♦ a for all a, b in S

To check "group-ness"

Given (S, ♦)

- checke that \$: SXS -> 5 1. Check "closure" for (S, ♦) (i.e, for any a, b in S, check a + b also in S).
- 2. Check that associativity holds.
- 3. Check there is a identity
- 4. Check every element has an inverse

Examples

Is $(\mathbb{N},+)$ a group?

Is + associative on \mathbb{N} ? YES!

Is there an identity? YES: 0

Does every element have an inverse? NO!

$(\mathbb{N},+)$ is NOT a group

Examples

Is (Z,+) a group?

Is + associative on Z? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

(Z,+) is a group

Examples

Is (Odds,+) a group?

Is + associative on Odds? YES!

Is there an identity? YES: 0 No

Does every element have an inverse? YES!

Are the Odds closed under addition NO!

(Odds,+) is NOT a group

Examples

Is (Y_{SQ}, \bullet) a group?

Is • associative on Y_{SQ}? YES!

Is there an identity? YES: R₀

Does every element have an inverse? YES!

 (Y_{SQ}, \bullet) is a group

Examples

Is $(Z_n^*, *)$ a group?

 $(Z_n^*$ is the set of integers modulo n that are relatively prime to n)

Is * associative on Z_n*? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

And some properties...

Identity Is Unique

Theorem: A group has at most one identity element

Proof:

Suppose e and f are both identities of G=(S,♦) eloa= a

Then f = e + f = e

a Der = atta

¥a

We denote this identity by "e"

Inverses Are Unique

Theorem: Every element in a group has a unique inverse

Proof:

Suppose b and c are both inverses of a

Then b = b + e = b + (a + c) = (b + a) + c = c

Generators								
A set $T \subseteq S$ is said to generate the group $G = (S, \diamond)$ if every element of S can be expressed as a finite product of elements in T								
Question: Does $\{R_{90}\}$ generate Y_{SQ} ? NO!								
Question: Does $\{F_{\mu}, R_{\mu}\}$ generate Y_{SQ} ? YES!								
An element $g \in S$ is called a generator of $G=(S, \blacklozenge)$ if $\{g\}$ generates G								
Does Y _{SQ} have a generator? NO!								

Orders

What about $(Z_n^*, *)$? order $(Z_n^*, *) = \phi(n) \implies \# \text{ felenet}_{0 \le n} \le c_n$ $st \in cd(n, \eta) = 1$ What about the order of its elements?

Orders

What about $(Z_n^*, *)$?

 $\operatorname{order}(\mathsf{Z}_{\mathsf{n}}^{*},\,{}^{*}) = \phi(\mathsf{n})$

What about the order of its elements?

Non-trivial theorem: There are ϕ (n-1) generators of (Z_n^{*}, *)

Subgroups

Suppose $G = (S, \bullet)$ is a group.

If $T \subseteq S$, and if $H = (T, \blacklozenge)$ is also a group, then H is called a subgroup of G.

(Z, +) is a group and (Evens, +) is a subgroup.

Also, (Z, +) is a subgroup of (Z, +). (Duh!)

What about (Odds, +)? No. (Note (roug!)

On to other algebraic definitions

Definition:

A ring R is a set together with two binary operations + and ×, satisfying the following properties:

- 1. (R,+) is a commutative group
- 2. × is associative
- 3. The distributive laws hold in R: (a + b) × c = (a × c) + (b × c) c × (a + b) = (c × a) + (c × b)

A field F is a set together with two binary operations + and ×, satisfying the following properties:

1. (F,+) is a commutative group

Definition:

2. (F-{0},×) is a commutative group

3. The distributive law holds in F: $(a + b) \times c = (a \times c) + (b \times c)$

