15-251

Great Theoretical Ideas in Computer Science

Algebraic Structures: Group Theory

Lecture 15 (October 14, 2008)

Today we are going to study the abstract properties of binary operations

Rotating a Square in Space

Imagine we can pick up the square, rotate it in any way we want, and then put it back on the white frame

Symmetries of the Square YSQ = { R⁰ , R90, R180, R270, F[|] , F—, F , F }

Some Formalism

If S is a set, S × **S is:**

the set of all (ordered) pairs of elements of S

 $S \times S = \{ (a,b) | a \in S \text{ and } b \in S \}$

If S has n elements, how many elements does S \times **S** have? n^2

Formally, \bullet **is a function from** $Y_{\text{SQ}} \times Y_{\text{SQ}}$ **to** Y_{SQ}

 \bullet : $Y_{\text{SO}} \times Y_{\text{SO}} \rightarrow Y_{\text{SO}}$

As shorthand, we write •**(a,b) as "a** • **b"**

Binary Operations

"•" is called a binary operation on Y_{SQ}

Definition: A binary operation on a set S is a function \cdot **:** $S \times S$ → (S)

Example:

The function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f(x,y) = xy + y$ $g(x, y) = \sqrt{x+y}$ **is a binary operation on** N not a buay

Associativity

A binary operation ♦ **on a set S is associative if:**

for all a,b,c∈**S, (a**♦**b)**♦**c = a**♦**(b**♦**c)**

Examples:

Is f: $N \times N \rightarrow N$ defined by $f(x,y) = xy + y$ **associative?**

 $(ab + b)c + c = a(bc + c) + (bc + c)? NO!$

Is the operation • **on the set of symmetries of the square associative? YES!**

Commutativity

A binary operation ♦ **on a set S is commutative if**

For all a,b∈**S, a** ♦ **b = b** ♦ **a**

Is the operation • **on the set of symmetries of the square commutative? NO!**

$$
R_{90} \bullet F_{\vert} \neq F_{\vert} \bullet R_{90}
$$

Identities

R0 is like a null motion

Is this true: ∀**a** ∈ **YSQ, a** • **R⁰ = R0** • **a = a? YES!**

 R_{0} is called the identity of \bullet on Y_{SQ}

In general, for any binary operation ♦ **on a set S, an element e** ∈ **S such that for all a** ∈ **S, e** ♦ **a = a** ♦ **e = a is called an identity of** ♦ **on S**

Inverses

Definition: The inverse of an element $a \in Y_{SO}$ **is an element b such that:**

 $a \cdot b = b \cdot a = R_0$

Examples:

R⁹⁰ inverse: R²⁷⁰

R¹⁸⁰ inverse: R¹⁸⁰

F| inverse: F[|]

 $\bullet:$ $S \times S \rightarrow S$

Groups

A group G is a pair (S,♦**), where S is a set and** ♦ **is a binary operation on S such that:**

- **1.** ♦ **is associative**
- **2. (Identity) There exists an element e** ∈ **S such that:** $e \cdot a = a \cdot e = a$, for all $a \in S$
- **3. (Inverses) For every a** ∈ **S there is b** ∈ **S such that: a** ♦ **b = b** ♦ **a = e**

Commutative or "Abelian" Groups

 R_0

 R_0

If $G = (S, \bullet)$ and \bullet is commutative, then **G is called a commutative group**

> **remember, "commutative" means a** ♦ **b = b** ♦ **a for all a, b in S**

To check "group-ness"

check that

Given (S,♦**)**

- \diamondsuit :Sxs \rightarrow s **1. Check "closure" for (S,**♦**) (i.e, for any a, b in S, check a** ♦ **b also in S).**
- **2. Check that associativity holds.**
- **3. Check there is a identity**
- **4. Check every element has an inverse**

Examples

Is (N**,+) a group?**

Is + associative on N**? YES!**

Is there an identity? YES: 0

Does every element have an inverse? NO!

(N**,+) is NOT a group**

Examples

Is (Z,+) a group?

Is + associative on Z? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

(Z,+) is a group

Examples

Is (Odds,+) a group?

Is + associative on Odds? YES!

Is there an identity? YES: 0 No!

Does every element have an inverse? YES!

Are the Odds closed under addition NO!

(Odds,+) is NOT a group

Examples

Is (YSQ, •**) a group?**

Is • associative on Y_{SQ}? YES!

Is there an identity? YES: R₀

Does every element have an inverse? YES!

(YSQ, •**) is a group**

Examples

Is (Zⁿ *, *) a group?

(Zⁿ * is the set of integers modulo n that are relatively prime to n)

Is * associative on Zⁿ * ? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

(Zⁿ *, *) is a group

And some properties…

Identity Is Unique

Theorem: A group has at most one identity element

Proof:

Suppose e and f are both identities of G=(S,♦**)** $\ell_{L}\otimes a = a$

Then $f = e \cdot f = e$

 $a \lozenge e_{l}$ = ata

Ya

We denote this identity by "e"

Inverses Are Unique

Theorem: Every element in a group has a unique inverse

Proof:

Suppose b and c are both inverses of a

Then $b = b \cdot e = b \cdot (a \cdot c) = (b \cdot a) \cdot c = c$

Generators A set T ⊆ **S is said to generate the group G = (S,**♦**) if every element of S can be expressed as a finite product of elements in T Question: Does {R**⁹⁰**}** generate Y^{SO}² **Question: Does {F[|] , R90} generate YSQ? An element g** ∈ **S is called a generator of G=(S,**♦**) if {g} generates G Does Y_{so} have a generator? NO! YES! NO!**

Orders

What about (Zⁿ *, *)? order(Zⁿ *, *) = φ**(n) What about the order of its elements?**

Orders

What about (Zⁿ *, *)?

order(Zⁿ *, *) = φ**(n)**

What about the order of its elements?

Non-trivial theorem: There are φ**(n-1) generators of (Zⁿ *, *)**

Subgroups

Suppose G = (S,♦**) is a group.**

If $T \subseteq S$, and if **H** = (**T**, \triangleleft) is also a group, **then H is called a subgroup of G.**

(Z, +) is a group and (Evens, +) is a subgroup.

Also, (Z, +) is a subgroup of (Z, +). (Duh!)

What about (Odds, +)? No. (Note ray!)

On to other algebraic definitions

Definition:

A ring R is a set together with two binary operations + and ×, satisfying the following properties:

- **1. (R,+) is a commutative group**
- **2. × is associative**
- **3. The distributive laws hold in R:** $(a + b) \times c = (a \times c) + (b \times c)$
	- $c \times (a + b) = (c \times a) + (c \times b)$

operations + and ×, satisfying the following properties:

1. (F,+) is a commutative group

Definition:

2. (F-{0},×) is a commutative group

3. The distributive law holds in F: $(a + b) \times c = (a \times c) + (b \times c)$

