
11/12/2008

1

15-251
Great Theoretical Ideas
in Computer Science

Grade School Again:Grade School Again:Grade School Again:Grade School Again:
A Parallel PerspectiveA Parallel PerspectiveA Parallel PerspectiveA Parallel Perspective

a question

If a man can plough a field in 25 days, how long

does it take for 5 men to plough the same field?

5 days

a similar question

If a processor can add two n-bit numbers

in n microseconds,

how long does it take for n processors

to add together two n-bit numbers?

hmm…

Warming up

thinking about parallelism

Dot products

a = (4 5 -2 1)

b = (1 -3 3 7)

Dot product of a and b

a•b = 4.1 + 5.(-3) + (-2).3 + 1.7 = 10

Also called “inner product”.

In general, a•b =

11/12/2008

2

Dot products

If we can add/multiply two numbers in time C,
how long does it take to compute
dot products for n-length vectors?

n multiplications

n-1 additions

hence, C*(2n-1) time.

simplifying assumption for now

Dot products

What if n people decided to compute dot products
and they worked in parallel?

Modeling decision:
what are people allowed to do in parallel?

Assume they have shared memory

Can read same location in memory in parallel

Each location in memory can be written to by
only one person at a time.

Can write to different locations in memory
simultaneously

Parallel dot products

What if n people decided to compute dot products
and they worked in parallel?

All the pairwise products can be computed in
parallel! (1 unit of time)

How to add these n products up fast?

Binary tree

Parallel dot products

What if n people decided to compute dot products
and they worked in parallel?

All the pairwise products can be computed in
parallel! (1 unit of time)

How to add these n products up fast?

Can add these numbers up in log2 n rounds
Hence dot products take log2 n +1 time in
parallel.

Not enough people?

What if there were fewer than n people?

11/12/2008

3

Another example:
Matrix-vector multiplications

Suppose we were given a m*n matrix A

and a n-length vector x

How much time does it take to compute Ax?

How much time in parallel?

Since just m dot product computations

and all of them can be done in parallel

So if we had m*n people, we could compute the
solution to Ax in O(log2 n) time

Back to our question…

If a single processor can
add two n-bit numbers
in n microseconds,
how long does it take

n processors
to add together

two n-bit numbers?

How to add 2 n-bit numbers.

*
*

*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

+

How to add 2 n-bit numbers.

*
*

*

*
*
*
*

*
*
*
*
*
*

*
*
*

*
*
*
*
*
*
*
*

+

How to add 2 n-bit numbers.

*
*

*

*
*
*
*

*
*
*
*

*
*
*

*
*
*

*

*
*
*
*
*
*
*
*

+

11/12/2008

4

How to add 2 n-bit numbers.

*
*

*

*
*
*
*

*
*

*
*
*

*
*
*

*

*
*
*

*

*
*
*
*
*
*
*
*

+

How to add 2 n-bit numbers.

*
*

*

*
*
*
*

*
*
*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*
*
*
*
*
*

+

How to add 2 n-bit numbers.

*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

+
*

*

How to add 2 n-bit numbers.

*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

+
*

*
Let k be the
maximum time that
it takes you to do

Time = kn
is proportional to n

The time grow linearly with
input size.

of bits in numbers

t
i
m
e

If n people agree to help you add two
n bit numbers, it is not obvious that
they can finish faster than if you had
done it yourself.

11/12/2008

5

Is it possible to
add two n bit

numbers in less
than linear

parallel-time?

Darn those
carries.

Plus/Minus Binary
(Extended Binary)

Base 2: Each digit can be -1, 0, 1,

Example:

1 -1 -1 = 4 -2 -1 = 1

Not a unique representation system

Fast parallel
addition is no
obvious in usual

binary.

But it is amazingly
direct in Extended

Binary!

Extended binary
means base 2

allowing digits to
be from {-1, 0, 1}.
We can call each
digit a “trit”.

n people can add two n-trit
plus/minus binary numbers in

constant time!

An Addition Party
to Add 110-1 to -111-1

-

11/12/2008

6

An Addition Party

1

-1

11

1

0

1

-1

-1

Invite n people to add two n-trit numbers

Assign one person to each trit position

An Addition Party

0 12 1 -2

Each person should add the two input trits
in their possession.

Problem: 2 and -2 are not allowed in the final
answer.

Pass Left

0

0 -1

-21

If you have a 1 or a 2 subtract 2 from yourself and
pass a 1 to the left. (Nobody keeps more than 0)

Add in anything that is given to you from the right.
(Nobody has more than a 1)

1

After passing left

1 11 -1 -2

There will never again be any 2s

as everyone had at most 0

and received at most 1 more

Passing left again

1 11

1 0

If you have a -1 or -2 add 2 to yourself

and pass a -1 to the left

(Nobody keeps less than 0)

-1-1

After passing left again

1 10 0 0

No -2s anymore either.

Everyone kept at least 0 and received at most -1.

11/12/2008

7

1 10 0 0

1

-1

11

1

0

1

-1

-1

=

Strategy

To add two n-bit binary numbers

Consider them to be in extended binary (EB)

no work required!

Sum them up to get an answer in EB.

constant parallel time!

Then convert them back to answer in binary

how do we do this fast in parallel???

Is there a fast

parallel way to

convert an Extended

Binary number into a

standard binary

number?

Both problems not

quite obvious:

Sub-linear time

addition in standard

Binary.

Sub-linear time

EB to Binary

Let’s reexamine

grade school

addition from

the view of a

computer

circuit.

Grade School Addition

1011111101

1000000110
+

1011111100

10100000011

11/12/2008

8

Grade School Addition

a4 a3 a2 a1 a0
b4 b3 b2 b1 b0

+

c5c4 c3c2c1

Grade School Addition

a4a3a2 a1 a0
b4b3b2 b1 b0

+

c5c4c3c2 c1

s1

Ripple-carry adder

ai bi

cici+1

si

aaaaaaaa44444444aaaaaaaa33333333aaaaaaaa22222222 a a a a a a a a1 1 1 1 1 1 1 1 aaaaaaaa00000000

bbbbbbbb44444444bbbbbbbb33333333bbbbbbbb22222222 b b b b b b b b1 1 1 1 1 1 1 1 bbbbbbbb00000000
+

c5c4c3c2 c1

s1

0cn

ai bi

ci

si

a0 b0a1 b1

s0

c1…

s1

…

an-1 bn-1

sn-1

Logical representation of
binary: 0 = false, 1 = true

s1 = (a1 XOR b1) XOR c1
c2 = (a1 AND b1)

OR (a1 AND c1)
OR (b1 AND c1)

aaaaaaaa44444444aaaaaaaa33333333aaaaaaaa22222222 a a a a a a a a1 1 1 1 1 1 1 1 aaaaaaaa00000000

bbbbbbbb44444444bbbbbbbb33333333bbbbbbbb22222222 b b b b b b b b1 1 1 1 1 1 1 1 bbbbbbbb00000000
+

c5c4c3c2 c1

s1

ai bi

cici+1

si

Logical representation of
binary: 0 = false, 1 = true

aaaaaaaa44444444aaaaaaaa33333333aaaaaaaa22222222 a a a a a a a a1 1 1 1 1 1 1 1 aaaaaaaa00000000

bbbbbbbb44444444bbbbbbbb33333333bbbbbbbb22222222 b b b b b b b b1 1 1 1 1 1 1 1 bbbbbbbb00000000
+

c5c4c3c2 c1

s1

ai bi

cici+1

si OR

ANDANDAND

XOR

XOR

cibiai

OR

ci+1 si

ai bi
cici+1

si

11/12/2008

9

0

How long to add two n bit numbers?

Propagation time through
the circuit will be θ(n)

Ripple-carry adder Circuits compute things in
parallel.

We can think of the
propagation delay as

PARALLEL TIME.

Is it possible to
add two n bit

numbers in less
than linear

parallel-time?

I suppose the EB
addition algorithm
could be helpful

somehow.

Plus/minus
binary means

base 2
allowing
digits to be

from {-1, 0, 1}.
We can call
each digit a

“trit”.

n people can add 2, n-trit, plus/minus
binary numbers in constant time!

11/12/2008

10

1 11

1

0

1

-1

-1 -1

Can we still do

addition quickly

in the standard

representation?

Yes, but first a neat idea…

Instead of adding
two numbers together
to make one number,

let’s think about
adding 3 numbers
to make 2 numbers.

Carry-Save Addition

The sum of three numbers can be
converted into the sum of 2 numbers
in constant parallel time!

1100111011 1100111011 1100111011 1100111011 1100111011 1100111011 1100111011 1100111011
10111111011011111101101111110110111111011011111101101111110110111111011011111101
10000001101000000110100000011010000001101000000110100000011010000001101000000110

+
+

XOR

Carries

Carry-Save Addition

The sum of three numbers can be
converted into the sum of 2 numbers
in constant parallel time!

1100111011 1100111011 1100111011 1100111011 1100111011 1100111011 1100111011 1100111011
10111111011011111101101111110110111111011011111101101111110110111111011011111101
10000001101000000110100000011010000001101000000110100000011010000001101000000110

+
+

1111000000
10001111110

+

Cool!

So if we if represent x as a+b,
and y as c+d, then can add x,y
using two of these (this is
basically the same as that
extended binary thing).

(a+b+c)+d=(e+f)+d=g+h

11/12/2008

11

An aside:
Even in standard

representation, this is really
useful for multiplication.

Grade School Multiplication

X
10110111
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

We need to add n 2n-bit numbers:
a1, a2, a3,…, an

Grade School MultiplicationGrade School MultiplicationGrade School MultiplicationGrade School MultiplicationGrade School MultiplicationGrade School MultiplicationGrade School MultiplicationGrade School Multiplication

X
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

aaaaaaaa11111111
aaaaaaaa22222222
aaaaaaaa33333333
........

........

........

aaaaaaaannnnnnnn

A tree of carryA tree of carryA tree of carryA tree of carryA tree of carryA tree of carryA tree of carryA tree of carry--------save adderssave adderssave adderssave adderssave adderssave adderssave adderssave adders
a1 an

+

Add the last two

+

+ + +

+

+

+

+++

+

+

A tree of carryA tree of carryA tree of carryA tree of carryA tree of carryA tree of carryA tree of carryA tree of carry--------save adderssave adderssave adderssave adderssave adderssave adderssave adderssave adders

T(n) ≈ log3/2(n) + [last step]

+

Add the last two

+

+ + +

+

+

+

+++

+

+

So let’s go back to the problem of
adding two numbers.

In particular, if we can add two
numbers in O(log n) parallel time,
then we can multiply in O(log n)

parallel time too!

11/12/2008

12

If we knew the carries it would be very
easy to do fast parallel addition

0

What do we know about the
carry-out before we know the

carry-in?
a b

cincout

s

a b Cout

0 0

0 1

1 0

1 1

What do we know about the
carry-out before we know the

carry-in?
a b

cincout

s

a b Cout

0 0 0

0 1 Cin

1 0 Cin

1 1 1

What do we know about the
carry-out before we know the

carry-in?
a b

cincout

s

a b Cout

0 0 0

0 1 ←
1 0 ←
1 1 1

Hey, this is just a function of a
and b. We can do this in

parallel.

a b Cout

0 0 0

0 1 ←
1 0 ←
1 1 1

Idea #1: do this calculation first.

1011111101

1000000110
+

10←←←←←←←← ←←←←←←←← ←←←←←←←← ←←←←←←←← ←←←←←←←←1←←←←←←←←0

This takes just one step!This takes just one step!This takes just one step!This takes just one step!

11/12/2008

13

Idea #1: do this calculation first.

Also, once we actually have the carries,
it will only takes one step more:

si = (ai XOR bi) XOR ci

1011111101

1000000110
+

10←←←←←←←← ←←←←←←←← ←←←←←←←← ←←←←←←←← ←←←←←←←←1←←←←←←←←0

10101010← ← ←←←1111←0000

Called the “parallel prefix problem”

But we only have the carries in this
peculiar notation!

How fast can we convert from this notation
back to the standard notation?

1011111101011111101011111101011111100000

☺ 0 1 ←

0 0 0 0

1 1 1 1

← 0 1 ←

(1 ☺ (0 ☺(←☺(←☺ (←☺ (←☺ (←☺ (1 ☺ (←☺ 0)))))))))

Can think of10101010← ← ←←←1111←0000 as all

partial results in:

for the operator ☺:

Idea #2:

←☺ x = x

1 ☺ x = 1

0 ☺ x = 0

(←☺ (←☺ (←☺ (1 ☺ (←☺ 0)))))
=

(←☺←) ☺ (←☺ 1) ☺ (←☺ 0)
=

←☺ 1 ☺ 0 = 1

And, the ☺ operator is associative.

Idea #2 (cont):

10101010← ← ←←←1111←0000

Just using the fact that we have
an Associative, Binary Operator

Binary Operator: an operation that
takes two objects and returns a
third.

A♠B = C

Associative:

(A ♠ B) ♠ C = A ♠ (B ♠ C)

Examples of
binary associative operators

• Addition on the integers

• Min(a,b)

• Max(a,b)

• Left(a,b) = a

• Right(a,b) = b

• Boolean AND

• Boolean OR

• ☺

11/12/2008

14

In what we are
about to do “+” will
mean an arbitrary
binary associative

operator.

Prefix Sum Problem

Input: Xn-1, Xn-2,…,X1, X0
Output: Yn-1, Yn-2,…,Y1, Y0
where

Y0 = X0
Y1 = X0 + X1
Y2 = X0 + X1 + X2
Y3 = X0 + X1 + X2 + X3

Yn-1 = X0 + X1 + X2 + X3 + … + Xn-1

...

Prefix Sum example when + = addition

Input: 6, 9, 2, 3, 4, 7

Output: 31, 25, 16, 14, 11, 7

where

Y0 = X0
Y1 = X0 + X1
Y2 = X0 + X1 + X2
Y3 = X0 + X1 + X2 + X3

Yn-1 = X0 + X1 + X2 + X3 + … + Xn-1

...

Example circuitry
(n = 4)

+

X1 X0

y1

X0X2

+

X1

+

y2

X0

y0

X3

+

+ +

X2 X1 X0

y3

yn-1

+

Divide, conquer, and glue
for computing yn-1

Xn/2-1 … X1 X0

sum on n/2
items

Xn-1 … Xn/2Xn-2

sum on n/2
items

T(1)=0

T(n) = T(n/2) + 1

T(n) = log2 n 

Slightly more
fancy construction

coming up…

11/12/2008

15

The above construction had
small parallel run-time

But it used a lot of addition gates

Let’s calculate how many we used…

+

X1 X0

y1
yn-1

+

Size of Circuit
(number of gates)

Xn/2-1 … X1 X0

Sum on n/2
items

Xn-1 … Xn/2Xn-2

Sum on
n/2 items

S(1)=0

S(n) = S(n/2) + S(n/2) +1

S(n) = n-1

Sum of Sizes

X0

y0

+

X1 X0

y1

X0X2

+

X1

+

y2

X3

+

+ +

X2 X1 X0

y3

S(n) = 0 + 1 + 2 + 3 + … + (n-1) = n(n-1)/2

Recursive Algorithm
n items (n = power of 2)

If n = 1, Y0 = X0;

+

X3 X2

+

X1 X0

+

X5 X4

+

Xn-3 Xn-4

+

Xn-1 Xn-2

…

Recursive Algorithm
n items (n = power of 2)

If n = 1, Y0 = X0;

+

X3 X2

+

X1 X0

+

X5 X4

+

Xn-3 Xn-4

+

Xn-1 Xn-2

…

…
Prefix sum on n/2 items

+

Recursive Algorithm
n items (n = power of 2)

If n = 1, Y0 = X0;

+

X3 X2

+

X1 X0

+

X5 X4

+

Xn-3 Xn-4

+

Xn-1 Xn-2

…

+++

Prefix sum on n/2 items

Yn-1 Y1 Y0Y2Yn-2 Y4 Y3…

…

11/12/2008

16

Parallel time complexity

T(1)=0; T(2) = 1; T(n) = T(n/2) + 2

T(n) = 2 log2(n) - 1

+

If n = 1, YIf n = 1, YIf n = 1, YIf n = 1, YIf n = 1, YIf n = 1, YIf n = 1, YIf n = 1, Y00000000 = X= X= X= X= X= X= X= X00000000;;;;;;;;

+
X3 X2

+
X1 X0

+
X5 X4

+
Xn-3 Xn-4

+
Xn-1 Xn-2

…

+++

Prefix sum on n/2 items

Yn-1 Y1 Y0Y2Yn-2 Y4 Y3…

…1

T(n/2)

1

Size

S(1)=0; S(n) = S(n/2) + n - 1

S(n) = 2n – log2n -2

+

If n = 1, YIf n = 1, YIf n = 1, YIf n = 1, YIf n = 1, YIf n = 1, YIf n = 1, YIf n = 1, Y00000000 = X= X= X= X= X= X= X= X00000000;;;;;;;;

+
X3 X2

+
X1 X0

+
X5 X4

+
Xn-3 Xn-4

+
Xn-1 Xn-2

…

+++

Prefix sum on n/2 items

Yn-1 Y1 Y0Y2Yn-2 Y4 Y3…

…n/2

S(n/2)

(n/2)-1

End of fancier
construction

To add two n-bit numbers: a and b

Compute carry in the peculiar notation ←←←←←←←←01

Convert it to carry in the standard notation

The sum is carry XOR (a XOR b)

Putting it all together:
Carry Look-Ahead Addition

Putting it all together:
Carry Look-Ahead Addition

To add two n-bit numbers: a and b

1 step to compute x values (←←←←←←←←01)
2 log2n - 1 steps to compute carries c

1 step to compute c XOR (a XOR b)

2 log2n + 1 parallel steps total T(n) ≈ log3/2(n) + 2log22n + 1

+

carry look ahead

+

+ + +

+

+

+

+++

+

+

Putting it all together: multiplication

11/12/2008

17

For a 64-bit word
that works out to a
parallel time of 22
for multiplication,
and 13 for addition.

And this is how addition works on
commercial chips…..

Processor n 2log2n +1

80186 16 9

Pentium 32 11

Alpha 64 13

In order to handle

integer

addition/subtraction we

use 2’s compliment

representation, e.g.,

-44=

-
6
4

3
2

1
6

8 4 2 1

1 0 1 0 1 0 0

Addition of two

numbers works the

same way (assuming

no overflow).

-
6
4

3
2

1
6

8 4 2 1

1 0 1 0 1 0 0

11/12/2008

18

To negate a number, flip

each of its bits and add 1.

-
6
4

3
2

1
6

8 4 2 1

1 0 1 0 1 0 0

-
6
4

3
2

1
6

8 4 2 1

0 1 0 1 0 1 1

-
6
4

3
2

1
6

8 4 2 1

0 1 0 1 1 0 0

To negate a number,

flip each of its bits

and add 1.

x + flip(x) = -1.

So, -x = flip(x)+1.

-
6
4

3
2

1
6

8 4 2 1

1 1 1 1 1 1 1

Most computers

use two’s

compliment

representation to

perform integer

addition and

subtraction.

If millions of
processors,
how much of a
speed-up
might I get
over a single
processor?

Brent’s Law

At best, p processors
will give you a factor of
p speedup over the time

it takes on a single
processor.

The traditional
GCD algorithm will
take linear time to
operate on two n
bit numbers. Can
it be done faster in

parallel?

11/12/2008

19

If n2 people agree to help you
compute the GCD of two n bit

numbers, it is not obvious that they
can finish faster than if you had done

it yourself.

No one
knows.

Parallel computation
addition in extended binary

one-bit adder

ripple-carry adders

computing carries using

parallel prefix sum

addition in parallel O(log n) time

mult. in parallel O(log n) time

one’s complement

Here’s What
You Need to
Know…

