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15-251
Great Theoretical Ideas 
in Computer Science

Grade School Again:Grade School Again:Grade School Again:Grade School Again:
A Parallel PerspectiveA Parallel PerspectiveA Parallel PerspectiveA Parallel Perspective

a question

If a man can plough a field in 25 days, how long

does it take for 5 men to plough the same field?

5 days

a similar question

If a processor can add two n-bit numbers 

in n microseconds, 

how long does it take for n processors 

to add together two n-bit numbers?

hmm…

Warming up 

thinking about parallelism

Dot products

a = (4   5   -2  1)

b = (1  -3   3   7)

Dot product of a and b

a•b     =   4.1 + 5.(-3) + (-2).3 + 1.7 = 10

Also called “inner product”.

In general, a•b =
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Dot products

If we can add/multiply two numbers in time C, 
how long does it take to compute 
dot products for n-length vectors?

n multiplications

n-1 additions

hence, C*(2n-1) time.

simplifying assumption for now

Dot products

What if n people decided to compute dot products
and they worked in parallel?

Modeling decision:
what are people allowed to do in parallel?

Assume they have shared memory

Can read same location in memory in parallel

Each location in memory can be written to by 
only one person at a time.

Can write to different locations in memory 
simultaneously

Parallel dot products

What if n people decided to compute dot products
and they worked in parallel?

All the pairwise products can be computed in 
parallel! (1 unit of time)

How to add these n products up fast?

Binary tree

Parallel dot products

What if n people decided to compute dot products
and they worked in parallel?

All the pairwise products can be computed in 
parallel! (1 unit of time)

How to add these n products up fast?

Can add these numbers up in log2 n rounds
Hence dot products take log2 n +1 time in 
parallel.

Not enough people?

What if there were fewer than n people?
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Another example:
Matrix-vector multiplications

Suppose we were given a m*n matrix A

and a n-length vector x

How much time does it take to compute Ax?

How much time in parallel?

Since just m dot product computations

and all of them can be done in parallel

So if we had m*n people, we could compute the 
solution to Ax in O(log2 n) time

Back to our question…

If  a single processor can 
add two n-bit numbers 
in n microseconds, 
how long does it take 

n processors 
to add together 

two n-bit numbers?

How to add 2 n-bit numbers.
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How to add 2 n-bit numbers.
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Let k be the 
maximum time that 
it takes you to do  

Time = kn 
is proportional to n

The time grow linearly with 
input size.

# of  bits in numbers

t
i
m
e

If n people agree to help you add two
n bit numbers, it is not obvious that
they can finish faster than if you had
done it yourself.
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Is it possible to 
add two n bit 

numbers in less 
than linear 

parallel-time? 

Darn those 
carries.

Plus/Minus Binary
(Extended Binary)

Base 2: Each digit can be -1, 0, 1, 

Example: 

1 -1 -1 = 4 -2 -1 = 1

Not a unique representation system

Fast parallel 
addition is no 
obvious in usual 

binary. 

But it is amazingly 
direct in Extended 

Binary! 

Extended binary 
means base 2 

allowing digits to 
be from {-1, 0, 1}. 
We can call each 
digit a “trit”.

n people can add two n-trit 
plus/minus binary numbers in 

constant time!

An Addition Party 
to Add 110-1 to -111-1

-
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An Addition Party

1

-1

11

1

0

1

-1

-1

Invite n people to add two n-trit numbers

Assign one person to each trit position

An Addition Party

0 12 1 -2

Each person should add the two input trits 
in their possession. 

Problem: 2 and -2 are not allowed in the final 
answer.

Pass Left

0

0 -1

-21

If  you have a 1 or a 2 subtract 2 from  yourself  and 
pass a 1 to the left. (Nobody keeps more than 0) 

Add in anything that is given to you from the right. 
(Nobody has more than a 1)

1

After passing left

1 11 -1 -2

There will never again be any 2s

as everyone had at most 0

and received at most 1 more

Passing left again

1 11

1 0

If  you have a -1 or -2 add 2 to yourself

and pass a -1 to the left

(Nobody keeps less than 0)

-1-1

After passing left again

1 10 0 0

No -2s anymore either.

Everyone kept at least 0 and received at most -1.
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1 10 0 0

1

-1

11

1

0

1

-1

-1

=

Strategy

To add two n-bit binary numbers

Consider them to be in extended binary (EB)

no work required!

Sum them up to get an answer in EB.

constant parallel time!

Then convert them back to answer in binary

how do we do this fast in parallel???

Is there a fast 

parallel way to 

convert an Extended 

Binary number into a 

standard binary 

number? 

Both problems not 

quite obvious:

Sub-linear time 

addition in standard 

Binary.

Sub-linear time 

EB to Binary

Let’s reexamine 

grade school 

addition from 

the view of  a 

computer 

circuit. 

Grade School Addition

1011111101

1000000110
+

1011111100

10100000011
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Grade School Addition

a4 a3 a2 a1 a0
b4 b3 b2 b1 b0

+

c5c4 c3c2c1

Grade School Addition

a4a3a2 a1  a0
b4b3b2 b1   b0

+

c5c4c3c2 c1

s1

Ripple-carry adder

ai bi

cici+1

si

aaaaaaaa44444444aaaaaaaa33333333aaaaaaaa22222222    a   a   a   a   a   a   a   a1   1   1   1   1   1   1   1   aaaaaaaa00000000

bbbbbbbb44444444bbbbbbbb33333333bbbbbbbb22222222   b   b   b   b   b   b   b   b1   1   1   1   1   1   1   1   bbbbbbbb00000000
+

c5c4c3c2   c1

s1

0cn

ai bi

ci

si

a0 b0a1 b1

s0

c1…

s1

…

an-1 bn-1

sn-1

Logical representation of 
binary: 0 = false, 1 = true

s1 = (a1 XOR b1) XOR c1
c2 = (a1 AND b1) 

OR (a1 AND c1)
OR (b1 AND c1) 

aaaaaaaa44444444aaaaaaaa33333333aaaaaaaa22222222    a   a   a   a   a   a   a   a1   1   1   1   1   1   1   1   aaaaaaaa00000000

bbbbbbbb44444444bbbbbbbb33333333bbbbbbbb22222222   b   b   b   b   b   b   b   b1   1   1   1   1   1   1   1   bbbbbbbb00000000
+

c5c4c3c2   c1

s1

ai bi

cici+1

si

Logical representation of 
binary: 0 = false, 1 = true

aaaaaaaa44444444aaaaaaaa33333333aaaaaaaa22222222    a   a   a   a   a   a   a   a1   1   1   1   1   1   1   1   aaaaaaaa00000000

bbbbbbbb44444444bbbbbbbb33333333bbbbbbbb22222222   b   b   b   b   b   b   b   b1   1   1   1   1   1   1   1   bbbbbbbb00000000
+

c5c4c3c2   c1

s1

ai bi

cici+1

si OR

ANDANDAND

XOR

XOR

cibiai

OR

ci+1 si

ai bi
cici+1

si
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0

How long to add two n bit numbers?

Propagation time through 
the circuit will be θ(n)

Ripple-carry adder Circuits compute things in 
parallel.

We can think of  the 
propagation delay as 

PARALLEL TIME.

Is it possible to 
add two n bit 

numbers in less 
than linear 

parallel-time? 

I suppose the EB 
addition algorithm 
could be helpful 

somehow.

Plus/minus 
binary means 

base 2 
allowing 
digits to be 

from {-1, 0, 1}. 
We can call 
each digit a 

“trit”.

n people can add 2, n-trit, plus/minus
binary numbers in constant time!
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1 11

1

0

1

-1

-1 -1

Can we still do

addition quickly

in the standard

representation?

Yes, but first a neat idea…

Instead of  adding 
two numbers together 
to make one number, 

let’s think about 
adding 3 numbers 
to make 2 numbers. 

Carry-Save Addition

The sum of three numbers can be 
converted into the sum of 2 numbers 
in constant parallel time!

1100111011 1100111011 1100111011 1100111011 1100111011 1100111011 1100111011 1100111011 
10111111011011111101101111110110111111011011111101101111110110111111011011111101
10000001101000000110100000011010000001101000000110100000011010000001101000000110

+
+

XOR

Carries

Carry-Save Addition

The sum of three numbers can be 
converted into the sum of 2 numbers 
in constant parallel time!

1100111011 1100111011 1100111011 1100111011 1100111011 1100111011 1100111011 1100111011 
10111111011011111101101111110110111111011011111101101111110110111111011011111101
10000001101000000110100000011010000001101000000110100000011010000001101000000110

+
+

1111000000
10001111110

+

Cool!

So if  we  if  represent x as a+b, 
and y as c+d, then can add x,y 
using two of  these (this is 
basically the same as that 
extended binary thing).

(a+b+c)+d=(e+f)+d=g+h
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An aside:
Even in standard 

representation, this is really 
useful for multiplication.

Grade School Multiplication

X
10110111
* * * * * * * * 

* * * * * * * *
* * * * * * * *

* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

We need to add n 2n-bit numbers:
a1, a2, a3,…, an

Grade School MultiplicationGrade School MultiplicationGrade School MultiplicationGrade School MultiplicationGrade School MultiplicationGrade School MultiplicationGrade School MultiplicationGrade School Multiplication

X
* * * * * * * * 
* * * * * * * * 

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * * * * * * * * * *

aaaaaaaa11111111
aaaaaaaa22222222
aaaaaaaa33333333
........

........

........

aaaaaaaannnnnnnn

A tree of  carryA tree of  carryA tree of  carryA tree of  carryA tree of  carryA tree of  carryA tree of  carryA tree of  carry--------save adderssave adderssave adderssave adderssave adderssave adderssave adderssave adders
a1 an

+

Add the last two

+

+ + +

+

+

+

+++

+

+

A tree of  carryA tree of  carryA tree of  carryA tree of  carryA tree of  carryA tree of  carryA tree of  carryA tree of  carry--------save adderssave adderssave adderssave adderssave adderssave adderssave adderssave adders

T(n) ≈ log3/2(n) + [last step]

+

Add the last two

+

+ + +

+

+

+

+++

+

+

So let’s go back to the problem of 
adding two numbers.

In particular, if we can add two 
numbers in O(log n) parallel time, 
then we can multiply in O(log n) 

parallel time too!
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If we knew the carries it would be very 
easy to do fast parallel addition

0

What do we know about the 
carry-out before we know the 

carry-in?
a  b

cincout

s

a b Cout

0 0

0 1

1 0

1 1

What do we know about the 
carry-out before we know the 

carry-in?
a  b

cincout

s

a b Cout

0 0 0

0 1 Cin 

1 0 Cin

1 1 1

What do we know about the 
carry-out before we know the 

carry-in?
a  b

cincout

s

a b Cout

0 0 0

0 1 ←
1 0 ←
1 1 1

Hey, this is just a function of  a
and b.  We can do this in 

parallel.

a b Cout

0 0 0

0 1 ←
1 0 ←
1 1 1

Idea #1: do this calculation first.

1011111101

1000000110
+

10←←←←←←←← ←←←←←←←← ←←←←←←←← ←←←←←←←← ←←←←←←←←1←←←←←←←←0

This takes just one step!This takes just one step!This takes just one step!This takes just one step!
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Idea #1: do this calculation first.

Also, once we actually have the carries, 
it will only takes one step more: 

si = (ai XOR bi) XOR ci

1011111101

1000000110
+

10←←←←←←←← ←←←←←←←← ←←←←←←←← ←←←←←←←← ←←←←←←←←1←←←←←←←←0

10101010← ← ←←←1111←0000

Called the “parallel prefix problem”

But we only have the carries in this 
peculiar notation!

How fast can we convert from this notation
back to the standard notation?

1011111101011111101011111101011111100000

☺ 0 1 ←

0 0 0 0

1 1 1 1

← 0 1 ←

(1 ☺ (0 ☺(←☺(←☺ (←☺ (←☺ (←☺ (1 ☺ (←☺ 0)))))))))

Can think of10101010← ← ←←←1111←0000 as all 

partial results in:

for the operator ☺:

Idea #2: 

←☺ x = x

1 ☺ x = 1

0 ☺ x = 0

(←☺ (←☺ (←☺ (1 ☺ (←☺ 0))))) 
= 

(←☺←) ☺ (←☺ 1) ☺ (←☺ 0)
=

←☺ 1 ☺ 0   =   1

And, the ☺ operator is associative.

Idea #2 (cont): 

10101010← ← ←←←1111←0000

Just using the fact that we have 
an Associative, Binary Operator

Binary Operator: an operation that 
takes two objects and returns a 
third.

A♠B = C

Associative:

( A ♠ B ) ♠ C = A ♠ ( B ♠ C )

Examples of 
binary associative operators

• Addition on the integers

• Min(a,b)

• Max(a,b)

• Left(a,b) = a

• Right(a,b) = b

• Boolean AND

• Boolean OR

• ☺



11/12/2008

14

In what we are 
about to do “+” will 
mean an arbitrary 
binary associative 

operator.

Prefix Sum Problem

Input: Xn-1, Xn-2,…,X1, X0
Output: Yn-1, Yn-2,…,Y1, Y0
where

Y0 = X0
Y1 = X0 + X1
Y2 = X0 + X1 + X2
Y3 = X0 + X1 + X2 + X3

Yn-1 = X0 + X1 + X2 + X3 + … + Xn-1

...

Prefix Sum example when + = addition

Input: 6,    9,  2,  3,   4, 7

Output: 31, 25, 16, 14, 11, 7

where

Y0 = X0
Y1 = X0 + X1
Y2 = X0 + X1 + X2
Y3 = X0 + X1 + X2 + X3

Yn-1 = X0 + X1 + X2 + X3 + … + Xn-1

...

Example circuitry
(n = 4)

+

X1 X0

y1

X0X2

+

X1

+

y2

X0

y0

X3

+

+ +

X2 X1 X0

y3

yn-1

+

Divide, conquer, and glue
for computing yn-1

Xn/2-1 … X1 X0

sum on n/2
items

Xn-1 … Xn/2Xn-2

sum on n/2
items

T(1)=0

T(n) = T(n/2) + 1

T(n) = log2 n 

Slightly more 
fancy construction 

coming up…
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The above construction had 
small parallel run-time

But it used a lot of addition gates

Let’s calculate how many we used…

+

X1 X0

y1
yn-1

+

Size of Circuit
(number of gates)

Xn/2-1 … X1 X0

Sum on n/2
items

Xn-1 … Xn/2Xn-2

Sum on 
n/2 items

S(1)=0

S(n) = S(n/2) + S(n/2) +1

S(n) = n-1

Sum of Sizes

X0

y0

+

X1 X0

y1

X0X2

+

X1

+

y2

X3

+

+ +

X2 X1 X0

y3

S(n) = 0 + 1 + 2 + 3 + … + (n-1) = n(n-1)/2

Recursive Algorithm
n  items (n = power of 2)

If n = 1, Y0 = X0;

+

X3 X2

+

X1 X0

+

X5 X4

+

Xn-3 Xn-4

+

Xn-1 Xn-2

…

Recursive Algorithm
n  items (n = power of 2)

If n = 1, Y0 = X0;

+

X3 X2

+

X1 X0

+

X5 X4

+

Xn-3 Xn-4

+

Xn-1 Xn-2

…

…
Prefix sum on n/2 items

+

Recursive Algorithm
n  items (n = power of 2)

If n = 1, Y0 = X0;

+

X3 X2

+

X1 X0

+

X5 X4

+

Xn-3 Xn-4

+

Xn-1 Xn-2

…

+++

Prefix sum on n/2 items

Yn-1 Y1 Y0Y2Yn-2 Y4 Y3…

…
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Parallel time complexity

T(1)=0; T(2) = 1; T(n) = T(n/2) + 2

T(n) = 2 log2(n) - 1

+

If  n = 1, YIf  n = 1, YIf  n = 1, YIf  n = 1, YIf  n = 1, YIf  n = 1, YIf  n = 1, YIf  n = 1, Y00000000 = X= X= X= X= X= X= X= X00000000;;;;;;;;

+
X3 X2

+
X1 X0

+
X5 X4

+
Xn-3 Xn-4

+
Xn-1 Xn-2

…

+++

Prefix sum on n/2 items

Yn-1 Y1 Y0Y2Yn-2 Y4 Y3…

…1

T(n/2)

1

Size

S(1)=0; S(n) = S(n/2) + n - 1

S(n) = 2n – log2n -2

+

If  n = 1, YIf  n = 1, YIf  n = 1, YIf  n = 1, YIf  n = 1, YIf  n = 1, YIf  n = 1, YIf  n = 1, Y00000000 = X= X= X= X= X= X= X= X00000000;;;;;;;;

+
X3 X2

+
X1 X0

+
X5 X4

+
Xn-3 Xn-4

+
Xn-1 Xn-2

…

+++

Prefix sum on n/2 items

Yn-1 Y1 Y0Y2Yn-2 Y4 Y3…

…n/2

S(n/2)

(n/2)-1

End of  fancier 
construction

To add two n-bit numbers: a and b

Compute carry in the peculiar notation ←←←←←←←←01

Convert it to carry in the standard notation

The sum is carry XOR (a XOR b)

Putting it all together: 
Carry Look-Ahead Addition

Putting it all together: 
Carry Look-Ahead Addition

To add two n-bit numbers: a and b

1 step to compute x values ( ←←←←←←←←01 )
2 log2n - 1 steps to compute carries c

1 step to compute c XOR (a XOR b)

2 log2n + 1 parallel steps total T(n) ≈ log3/2(n) + 2log22n + 1

+

carry look ahead

+

+ + +

+

+

+

+++

+

+

Putting it all together: multiplication
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For a 64-bit word 
that works out to a 
parallel time of  22 
for multiplication, 
and 13 for addition.

And this is how addition works on 
commercial chips…..

Processor n 2log2n +1

80186 16 9

Pentium 32 11

Alpha 64 13

In order to handle 

integer 

addition/subtraction we 

use 2’s compliment 

representation, e.g.,

-44=

-
6
4

3
2

1
6

8 4 2 1

1 0 1 0 1 0 0

Addition of  two 

numbers works the 

same way (assuming 

no overflow).

-
6
4

3
2

1
6

8 4 2 1

1 0 1 0 1 0 0
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To negate a number, flip 

each of  its bits and add 1.

-
6
4

3
2

1
6

8 4 2 1

1 0 1 0 1 0 0

-
6
4

3
2

1
6

8 4 2 1

0 1 0 1 0 1 1

-
6
4

3
2

1
6

8 4 2 1

0 1 0 1 1 0 0

To negate a number, 

flip each of  its bits 

and add 1.

x + flip(x) = -1.

So, -x = flip(x)+1.

-
6
4

3
2

1
6

8 4 2 1

1 1 1 1 1 1 1

Most computers 

use two’s 

compliment 

representation to 

perform integer 

addition and 

subtraction.

If  millions of  
processors, 
how much of  a 
speed-up 
might I get 
over a single 
processor?  

Brent’s Law

At best, p processors 
will give you a factor of 
p speedup over the time 

it takes on a single 
processor.

The traditional 
GCD algorithm will 
take linear time to 
operate on two n 
bit numbers. Can 
it be done faster in 

parallel? 



11/12/2008

19

If n2 people agree to help you 
compute the GCD of two n bit 

numbers, it is not obvious that they 
can finish faster than if you had done 

it yourself.

No one 
knows.

Parallel computation
addition in extended binary

one-bit adder

ripple-carry adders

computing carries using

parallel prefix sum

addition in parallel O(log n) time 

mult. in parallel O(log n) time

one’s complement

Here’s What 
You Need to 
Know…


