15-251 ## **Great Theoretical Ideas** in Computer Science ## Thales' and Gödel's Legacy: Proofs and Their Limitations Lecture 26 (November 20, 2008) ## A Quick Recap of the Previous Lecture ## The Halting Problem K = {P | P(P) halts } Is there a program HALT such that: - HALT(P) = yes, if P∈K - HALT(P)= no, if P∉K HALT decides whether or not any given program is in K. #### **Alan Turing (1912-1954)** Theorem: [1937] There is no program to solve the halting problem ## Computability Theory: Old Vocabulary We call a set $S \subseteq \Sigma^* \underline{decidable}$ or $\underline{recursive}$ if there is a program P such that: $P(x) = yes, if x \in S$ $P(x) = no, if x \notin S$ Hence, the halting set K is undecidable ## Computability Theory: New Vocabulary We call a set S_□∑* <u>enumerable</u> or <u>recursively enumerable (r.e.)</u> if there is a program P such that: - P prints an (infinite) list of strings. - Any element on the list should be in S. - Each element in S appears after a finite amount of time. # Is the halting set K enumerable? #### **Enumerating K** ``` Enumerate-K { for n = 0 to forever { for W = all strings of length < n do { if W(W) halts in n steps then output W; } } }</pre> ``` K is <u>not</u> decidable, but it is enumerable! Let K' = { Java P | P(P) does not halt} Is K' enumerable? If both K and K' are enumerable, then K is decidable. (why?) $^{\bigstar}$ (The more things change, the more they remain the same...) What's a proof? ### Thales Of Miletus (600 BC) Insisted on Proofs! "first mathematician" Most of the starting theorems of geometry. SSS, SAS, ASA, angle sum equals 180, . . . #### **Axioms** In traditional logic, an axiom or postulate is a proposition that is not proved or demonstrated but considered to be self-evident. Therefore, its truth is taken for granted, and serves as a starting point for deducing and inferring other truths. #### **Peano Arithmetic** The Peano axioms formally define the properties of the natural numbers - 1. For every natural number n, n = n - 2. For all natural numbers, if n = m, then m = n. - 3. For all naturals if k = m and m = n then k = n. - 4. If n is a natural number and n = m, then m is also a natural number. #### Peano Arithmetic (contd.) - 5. 0 is a natural number. - 6. For every natural number n, its "successor" S(n) is a natural number. - 7. For every natural number n, $S(n) \neq 0$. - 8. For all natural numbers m and n, if S(m) = S(n), then m = n. #### What is a proof? Intuitively, a proof is a sequence of "statements", each of which follows "logically" from some of the previous steps. What are "statements"? What does it mean for one to follow "logically" from another? # What are "statements"? What does it mean for one to follow "logically" from another? Intuitively, statements must be stated in some language. Formally, statements are strings of a decidable language S over Σ . That is, S is a subset of Σ^* and there is a Java program $P_S(x)$ that outputs Yes if x is in S, and outputs No otherwise. This decidable set S is the set of "syntactically valid" strings, or "statements" of a language. #### Example: Let S be the set of all syntactically well formed statements in propositional logic. $$X \lor \neg X$$ $(X \land Y) \Rightarrow Y$ $\lor X \neg Y \text{ (not)}$ Typically, language syntax is defined inductively. This makes it easy to write a recursive program to recognize the strings in the language. #### Syntax for Statements in Propositional Logic $\begin{tabular}{ll} Variable \rightarrow X, Y, X_1, X_2, X_3, \dots \\ Literal \rightarrow Variable & \neg Variable \\ Statement \rightarrow & Literal & \neg (Statement) \\ & Statement \wedge Statement \\ \end{tabular}$ Statement v Statement #### **Recursive Program to decide S** ``` \label{eq:ValidProp(S) } ValidProp(S) \{ \\ return True \ if \ any \ of \ the \ following: \\ S \ has \ the \ form \ \neg(S_1) \ and \ ValidProp(S_1) \\ S \ has \ the \ form \ (S_1 \land S_2) \ and \\ ValidProp(S_1) \ AND \ ValidProp(S_2) \\ S \ has \ the \ form \ \dots... \\ \} ``` We can now precisely define a syntactically valid set of "statements" in a language. But what is "logic", and what is "meaning"? For the time being, let us ignore the meaning of "meaning", and pin down our concepts in purely symbolic (syntactic) terms. #### Define a function Logics Given a decidable set of statements S, fix any single computable "logic function": Logic_S: $(S \cup \Delta) \times S \rightarrow Yes/No$ If Logic(x,y) = Yes, we say that the statement y is implied by statement x. We also have a "start statement" $\boldsymbol{\Delta}$ not in S, where $Logic_S(\Delta,x)$ = Yes will mean that our logic views the statement x as an axiom. #### A valid proof in logic Logic_S A sequence $s_1, s_2, ..., s_n$ of statements is a valid proof of statement Q in Logic_s iff - Logic_S(\triangle , s₁) = True (i.e., s₁ is an axiom of our language) - For all $1 \le i \le n-1$, $Logic_S(s_j, s_{j+1})$ = True (i.e., each statement implies the next one) - And finally, s_n = Q (i.e., the final statement is indeed Q.) ## Provable Statements (a.k.a. Theorems) Let S be a set of statements. Let L be a logic function. Define Provable_{S,L} = All statements Q in S for which there is a valid proof of Q in logic L. #### Example SILLY₁ S = All strings. L = All pairs of the form: $\langle \Delta, s \rangle$, $s \in S$ $\label{eq:provable_s_limit} \textbf{Provable}_{\textbf{S},\textbf{L}} \, \textbf{is the set of all strings}.$ #### Example: SILLY₂ S = All strings over $\{0,1\}$. L = $\langle \triangle, 0 \rangle$, $\langle \triangle, 1 \rangle$, and all pairs of the form: $\langle s, s0 \rangle$ or $\langle s, s1 \rangle$ Provable_{S,L} is the set of all strings. #### Example: SILLY₃ S = All strings. L = $\langle \Delta, 0 \rangle$, $\langle \Delta, 11 \rangle$, and all pairs of the form: $\langle s, s0 \rangle$ or $\langle st, s1t1 \rangle$ Provable $_{S,L}$ is the set of all strings with an even number of 1s #### **Example: Propositional Logic** S = All well-formed formulas in the notation of Propositional Logic. L = Two formulas are one step apart if one can be made from the other from a finite list of forms. (see next page for a partial list.) ``` Modus ponens [(p \rightarrow q) \land p] \rightarrow [q] Modus tollons [(p \rightarrow q) \land \neg q] \rightarrow [\neg p] Conjunction introduction for Conjunction) [(p) \land (q)] \rightarrow [p \land q] Disjunction introduction (or Addition) [p] \rightarrow [p \lor q] Simplification [p \land q] \rightarrow [p] Disjunctive syllopjans [(p \lor q) \land \neg p] \rightarrow [q] Hypothetical syllopjans [(p \lor q) \land \neg p] \rightarrow [q] Hypothetical syllopjans [(p \rightarrow q) \land (q \rightarrow r)] \rightarrow [p \rightarrow r] Constructive dilemma [(p \rightarrow q) \land (r \rightarrow s) \land (p \lor r)] \rightarrow [q \lor s] Destructive dilemma [(p \rightarrow q) \land (r \rightarrow s) \land (p \lor r)] \rightarrow [\neg p \lor \neg r] (the same us 2 applications of transposition, then 1 application of constructive dilemma.) Resolution [(p \lor q) \land (\neg p \lor r)] \rightarrow [(q \lor r)] About the ``` #### **Example: Propositional Logic** S = All well-formed formulas in the notation of Propositional Logic. L = Two formulas are one step apart if one can be made from the other from a finite list of forms. (see previous page for a partial list.) (hopefully) Provable_{s,L} is the set of all formulas that are tautologies in propositional logic. #### **Super Important Fact** Let S be any (decidable) set of statements. Let L be any (computable) logic. We can write a program to enumerate the provable theorems of L. I.e., Provable_{S.L} is enumerable. #### **Enumerating the Set Provable_{S.L.}** #### **Example: Euclid and ELEMENTS** We could write a program ELEMENTS to check (STATEMENT, PROOF) pairs to determine if PROOF is a sequence, where each step is either one logical inference, or one application of the axioms of Euclidian geometry. THEOREMS_{ELEMENTS} is the set of all statements provable from the axioms of Euclidean geometry. #### Example: Peano and PA. We could write a program PA to check (STATEMENT, PROOF) pairs to determine if PROOF is a sequence, where each step is either one logical inference, or one application of the axioms of Peano Arithmetic THEOREMS_{PA} is the set of all statements provable from the axioms of Peano Arithmetic OK, so I see what valid syntax is, what logic is, what a proof and what theorems are... But where does "truth" and "meaning" come in it? Let S be any decidable language. Let Truth_S be any fixed function from S to True/False. We say Truth_s is a "truth concept" associated with the strings in S. #### **Truths of Natural Arithmetic** Arithmetic_Truth = All TRUE expressions of the language of arithmetic (logical symbols and quantification over Naturals). #### **Truths of Euclidean Geometry** Euclid_Truth = All TRUE expressions of the language of Euclidean geometry. #### **Truths of JAVA Program Behavior** JAVA_Truth = All TRUE expressions of the form program "P on input X will halt" or "not halt" #### **General Picture** A decidable set of statements S. A computable logic L. A (possibly uncomputable) truth concept Truth_s: $S \rightarrow \{T, F\}$ We work in logics that we think are related to our truth concepts. A logic L is "sound" for a truth concept Truth_s if $x \text{ in Provable}_{S,L} \Rightarrow Truth_{S}(x) = T$ L is sound for Truths if • L(\triangle , A) = true \Rightarrow Truth_s(A)= True • L(B,C)=True and Truth_S(B)=True ⇒ Truth_S(C)= True L is sound for Truth_S means that L can't prove anything false for the truth concept Truth_S. $\mathsf{Provable}_{\mathsf{L.S}} \Rightarrow \mathsf{Truth}_{\mathsf{S}}$ SILLY₃ is sound for the truth concept of an even number of ones. Example SILLY₃ S = All strings. L = $<\Delta$, 0> , $<\Delta$, 11>, and all pairs of the form: <s,s0> or <st, s1t1> Provable_{S,L} is the set of all strings with zero parity. Euclidean Geometry is sound for the truth concept of facts about points and lines in the Euclidean plane. Peano Arithmetic is sound for the truth concept of (first order) number facts about Natural numbers. A logic may be sound but it still might not be "complete" A logic L is complete for a truth concept Truth_s if it can prove every statement that is True in Truth_s $\begin{array}{c} \textbf{Soundness:} \\ \textbf{Provable}_{s,\textbf{L}} \Rightarrow \textbf{Truth}_{s} \end{array}$ Completeness: Truth_s ⇒ Provable_{s.L} ${\bf SILLY_3}$ is sound and complete for the truth concept of an even number of ones. Example SILLY₃ S = All strings. L = $<\Delta$, 0> , $<\Delta$, 11>, and all pairs of the form: <s,s0> or <st, s1t1> Provable_{S,L} is the set of all strings with zero parity. #### **Truth versus Provability** **Happy News:** Provable_{Elements} = Euclid_Truth The Elements of Euclid are sound and complete for (Euclidean) geometry. #### **Truth versus Provability** **Harsher Fact:** Provable_{PeanoArith} is a proper subset of Arithmetic_Truth Peano Arithmetic is sound. It is not complete. #### **Truth versus Provability** **Foundational Crisis:** It is impossible to have a proof system F such that Provable_{F,S} = Arithmetic_Truth F is sound for arithmetic will imply F is not complete. #### Here's what we have A language S. A truth concept Truth_S. A logic L that is sound (maybe even complete) for the truth concept. An enumerable list $Provable_{S,L}of$ provable statements (theorems) in the logic. #### JAVA_Truth is Not Enumerable Suppose JAVA_Truth is enumerable, and the program JAVA LIST enumerates JAVA Truth. Can now make a program HALT(P): Run JAVA_LIST until either of the two statements appears: "P(P) halts", or "P(P) does not halt". Output the appropriate answer. Contradiction of undecidability of K. #### JAVA_Truth has No Proof System There is no sound and complete proof system for JAVA_Truth. Suppose there is. Then there must be a program to enumerate Provable_{s.L}. $\label{eq:provable_s_l} \textbf{Provable}_{s,L} \ \textbf{is recursively enumerable}. \\ \textbf{JAVA_Truth is not recursively enumerable}. \\$ So $Provable_{S,L} \neq JAVA_Truth$ The Halting problem is not decidable. Hence, JAVA_Truth is not recursively enumerable. Hence, JAVA_Truth has no sound and complete proof system. Similarly, in the last lecture, we saw that the existence of integer roots for Diophantine equations was not decidable. Hence, Arithmetic_Truth is not recursively enumerable. Hence, Arithmetic_Truth has no sound and complete proof system!!!! #### Hilbert's Second Question [1900] Is there a foundation for mathematics that would, in principle, allow us to decide the truth of any mathematical proposition? Such a foundation would have to give us a clear procedure (algorithm) for making the decision. #### **Foundation F** Let F be any foundation for mathematics: - 1. F is a proof system that only proves true things [Soundness] - 2. The set of valid proofs is computable. [There is a program to check any candidate proof in this system] (Think of F as (S,L) in the preceding discussion, with L being sound.) ## Gödel's Incompleteness Theorem In 1931, Kurt Gödel stunned the world by proving that for any consistent axioms F there is a true statement of first order number theory that is not provable or disprovable by F. I.e., a true statement that can be made using 0, 1, plus, times, for every, there exists, AND, OR, NOT, parentheses, and variables that refer to natural numbers. #### Incompleteness Let us fix F to be any attempt to give a foundation for mathematics. We have already proved that it cannot be sound and complete. Furthermore... We can even construct a statement that we will all believe to be true, but is not provable in F. #### CONFUSE_F(P) Loop though all sequences of sentences in S If S is a valid F-proof of "P halts", then loop-forever If S is a valid F-proof of "P never halts", then halt. Program CONFUSE_F(P) Loop though all sequences of sentences in S If S is a valid F-proof of "P halts", then loop-forever If S is a valid F-proof of "P never halts", then halt. GODEL_F = AUTO_CANNIBAL_MAKER(CONFUSE_F) Thus, when we run $GODEL_F$ it will do the same thing as: $CONFUSE_F(GODEL_F)$ Program CONFUSE_F(P) Loop though all sequences of sentences in S If S is a valid F-proof of "P halts", then loop-forever If S is a valid F-proof of "P never halts", then halt. GODEL_F = AUTO_CANNIBAL_MAKER(CONFUSE_F) Thus, when we run $GODEL_F$ it will do the same thing as $CONFUSE_F(GODEL_F)$ Can F prove GODEL_F halts? If Yes, then $CONFUSE_F(GODEL_F)$ does not halt: Contradiction Can F prove GODEL_F does not halt? If Yes , then CONFUSE_F(GODEL_F) halts: Contradiction #### GODEL_F F can't prove or disprove that $\mathsf{GODEL}_\mathsf{F}$ halts. $But\ GODEL_F = CONFUSE_F(GODEL_F)$ is the program: Loop though all sequences of sentences in S If S is a valid F-proof of "GODEL $_{\rm F}$ halts", then loop-forever If S is a valid F-proof of "GODEL $_F$ never halts", then halt. And this program does not halt! No fixed set of assumptions F can provide a complete foundation for mathematical proof. In particular, it can't prove the true statement that GODEL_F does not halt. #### So What is Mathematics? We can still have rigorous, precise axioms that we agree to use in our reasoning (like the Peano Axioms, or axioms for Set Theory). We just can't hope for them to be complete. Most working mathematicians never hit these points of uncertainty in their work, but it does happen!