
1

15-251
Great Theoretical Ideas
in Computer Science

Thales’ and Gödel’s Legacy:
Proofs and Their Limitations

Lecture 26 (November 20, 2008)

A Quick Recap of
the Previous Lecture

The Halting Problem
K = {P | P(P) halts }

Is there a program HALT such that:

• HALT(P)= yes, if P∈K

• HALT(P)= no, if P∉K

HALT decides whether or not any given
program is in K.

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting problem

Computability Theory:
Old Vocabulary

We call a set S⊆Σ* decidable or recursive if
there is a program P such that:

P(x) = yes, if x∈S

P(x) = no, if x∉S

Hence, the halting set K is undecidable

2

Computability Theory:
New Vocabulary

We call a set S⊆Σ* enumerable or
recursively enumerable (r.e.) if there is a
program P such that:

• P prints an (infinite) list of strings.

• Any element on the list should be in S.

• Each element in S appears after a finite
amount of time.

Is
the halting set K

enumerable?

Enumerating K

Enumerate-K {

for n = 0 to forever {

for W = all strings of length < n do {

if W(W) halts in n steps then output W;

}

}

}

K is not decidable, but
it is enumerable!

Let K’ = { Java P | P(P)
does not halt}

Is K’ enumerable?

If both K and K’ are enumerable,
then K is decidable. (why?)

And on to newer topics*

*(The more things change, the more they remain the same…)

What’s a proof?

3

Thales Of Miletus (600 BC)
Insisted on Proofs!

“first mathematician”

Most of the starting theorems of geometry.
SSS, SAS, ASA, angle sum equals 180, . . .

Axioms

In traditional logic, an axiom or postulate is
a proposition that is not proved or

demonstrated but considered to be self-
evident.

Therefore, its truth is taken for granted,
and serves as a starting point for deducing

and inferring other truths.

Peano Arithmetic

The Peano axioms formally define the
properties of the natural numbers

4. If n is a natural number and n = m, then m is
also a natural number.

1. For every natural number n, n = n

2. For all natural numbers, if n = m, then m = n.

3. For all naturals if k = m and m = n then k = n.

5. 0 is a natural number.

8. For all natural numbers m and n, if
S(m) = S(n), then m = n.

6. For every natural number n, its
“successor” S(n) is a natural number.

7. For every natural number n, S(n) ≠ 0.

Peano Arithmetic (contd.)

What is a proof?

Intuitively, a proof is a sequence of
“statements”, each of which
follows “logically” from some of
the previous steps.

What are “statements”? What does
it mean for one to follow “logically”
from another?

What are “statements”? What does
it mean for one to follow “logically”
from another?

Formally, statements are strings of
a decidable language S over Σ.

Intuitively, statements must be stated
in some language.

That is, S is a subset of Σ* and there is a
Java program PS(x) that outputs Yes if x
is in S, and outputs No otherwise.

4

This decidable set S is the set of “syntactically
valid” strings, or “statements” of a language.

Example:
Let S be the set of all syntactically well
formed statements in propositional logic.

X ∨ ¬X
(X∧Y) ⇒ Y
∨X¬Y

Typically, language syntax is defined inductively.

This makes it easy to write a recursive program to
recognize the strings in the language.

(not)

Syntax for Statements in
Propositional Logic

Variable → X, Y, X1, X2, X3, …

Literal → Variable | ¬Variable

Statement →

Literal

¬(Statement)

Statement ∧ Statement

Statement ∨ Statement

Recursive Program to decide S

ValidProp(S) {

return True if any of the following:

S has the form ¬(S1) and ValidProp(S1)

S has the form (S1 ∧ S2) and

ValidProp(S1) AND ValidProp(S2)

S has the form …..

}

We can now precisely define a
syntactically valid set of “statements”
in a language.

But what is “logic”, and what is
“meaning”?

For the time being, let us ignore the
meaning of “meaning”, and pin down our
concepts in purely symbolic (syntactic)
terms.

Define a function LogicS

Given a decidable set of statements S, fix any
single computable “logic function”:

LogicS: (S ∪ ∆) × S → Yes/No

If Logic(x,y) = Yes, we say that the
statement y is implied by statement x.

We also have a “start statement” ∆ not in S,
where
LogicS(∆,x) = Yes will mean that our logic
views the statement x as an axiom.

A valid proof in logic LogicS

• LogicS(∆, s1) = True

(i.e., s1 is an axiom of our language)

• For all 1 ≤ i ≤ n-1, LogicS(sj,sj+1) = True

(i.e., each statement implies the next one)

• And finally, sn = Q

(i.e., the final statement is indeed Q.)

A sequence s1, s2, …, sn of statements is a
valid proof of statement Q in LogicS iff

5

Provable Statements
(a.k.a. Theorems)

Let S be a set of statements.
Let L be a logic function.

Define ProvableS,L =
All statements Q in S for which
there is a valid proof of Q in logic L.

Example SILLY1

S = All strings.

L = All pairs of the form: <∆, s>, s∈S

ProvableS,L is the set of all strings.

Example: SILLY2

S = All strings over {0,1}.

L = <∆, 0> , <∆, 1>, and

all pairs of the form: <s,s0> or <s, s1>

ProvableS,L is the set of all strings.

Example: SILLY3

S = All strings.

L = <∆, 0> , <∆, 11>, and

all pairs of the form: <s,s0> or <st, s1t1>

ProvableS,L is the set of all strings with an
even number of 1s

Example: Propositional Logic

S = All well-formed formulas in the notation of

Propositional Logic.

L = Two formulas are one step apart if one
can be made from the other from a finite list
of forms. (see next page for a partial list.)

6

Example: Propositional Logic

S = All well-formed formulas in the notation of

Propositional Logic.

L = Two formulas are one step apart if one can
be made from the other from a finite list of
forms. (see previous page for a partial list.)

(hopefully) ProvableS,L is the set of all
formulas that are tautologies in
propositional logic.

Super Important Fact

Let S be any (decidable) set of statements.

Let L be any (computable) logic.

We can write a program to enumerate the
provable theorems of L.

I.e., ProvableS,L is enumerable.

Enumerating the Set ProvableS,L

for k = 0 to forever do

{

let PROOF loop through all strings of length k

{

let STMT loop through all strings of length < k

{

if proofcheckS,L(STMT, PROOF) = Valid

{

output STMT; //this is a theorem

}

}

}

}

Example: Euclid and ELEMENTS

We could write a program ELEMENTS to
check (STATEMENT, PROOF) pairs to
determine if PROOF is a sequence, where
each step is either one logical inference, or
one application of the axioms of Euclidian
geometry.

THEOREMSELEMENTS is the set of all statements
provable from the axioms of Euclidean
geometry.

Example: Peano and PA.

We could write a program PA to check
(STATEMENT, PROOF) pairs to determine if
PROOF is a sequence, where each step is
either one logical inference, or one
application of the axioms of Peano
Arithmetic

THEOREMSPA is the set of all statements
provable from the axioms of Peano
Arithmetic

OK, so I see what valid
syntax is, what logic is, what
a proof and what
theorems are…

But where does “truth” and
“meaning” come in it?

7

Let S be any decidable
language. Let TruthS be any
fixed function from S to
True/False.

We say TruthS is a “truth
concept” associated with the
strings in S.

Truths of Natural Arithmetic

All TRUE expressions of the
language of arithmetic (logical
symbols and quantification over
Naturals).

Arithmetic_Truth =

Truths of Euclidean Geometry

Euclid_Truth =

All TRUE expressions of the
language of Euclidean
geometry.

Truths of JAVA Program Behavior

JAVA_Truth =

All TRUE expressions of the form
program “P on input X will halt” or
“not halt”

General Picture

A decidable set of statements S.

A computable logic L.

A (possibly uncomputable)
truth concept

TruthS: S → {T, F}

We work in logics that we think are related
to our truth concepts.

A logic L is “sound” for a truth concept
TruthS if

x in ProvableS,L ⇒ TruthS(x) = T

L is sound for TruthS if
• L(∆, A) = true ⇒TruthS(A)= True

• L(B,C)=True and TruthS(B)=True
⇒ TruthS(C)= True

8

L is sound for TruthS means that L can’t prove
anything false for the truth concept TruthS.

ProvableL,S⇒ TruthS

Example SILLY3

S = All strings.

L = <∆, 0> , <∆, 11>, and

all pairs of the form: <s,s0> or <st, s1t1>

ProvableS,L is the set of all strings
with zero parity.

SILLY3 is sound for the truth concept
of an even number of ones.

Euclidean Geometry is
sound for the truth concept of
facts about points and lines in the
Euclidean plane.

Peano Arithmetic is sound for the
truth concept of (first order)
number facts about Natural
numbers.

A logic may be sound but it still
might not be “complete”

A logic L is complete for a truth
concept TruthS if it can prove every
statement that is True in TruthS

Soundness:
ProvableS,L⇒ TruthS

Completeness:
TruthS⇒ ProvableS,L

Example SILLY3

S = All strings.

L = <∆, 0> , <∆, 11>, and

all pairs of the form: <s,s0> or <st, s1t1>

ProvableS,L is the set of all strings
with zero parity.

SILLY3 is sound and complete for the truth
concept of an even number of ones.

9

Truth versus Provability

Happy News:

ProvableElements = Euclid_Truth

The Elements of Euclid are
sound and complete

for (Euclidean) geometry.

Truth versus Provability

Harsher Fact:

ProvablePeanoArith is a proper subset

of Arithmetic_Truth

Peano Arithmetic is sound.

It is not complete.

Truth versus Provability

F is sound for
arithmetic will imply
F is not complete.

Foundational Crisis:

It is impossible to have a proof system
F such that

ProvableF,S = Arithmetic_Truth

Here’s what we have

A language S.

A truth concept TruthS.

A logic L that is sound (maybe even
complete) for the truth concept.

An enumerable list ProvableS,Lof provable
statements (theorems) in the logic.

JAVA_Truth is Not Enumerable

Suppose JAVA_Truth is enumerable, and the
program JAVA_LIST enumerates JAVA_Truth.

Can now make a program HALT(P):

Run JAVA_LIST until either of the two
statements appears: “P(P) halts”, or “P(P)
does not halt”.

Output the appropriate answer.

Contradiction of undecidability of K.

JAVA_Truth has No Proof System

There is no sound and complete proof
system for JAVA_Truth.

Suppose there is. Then there must be a
program to enumerate ProvableS,L.

ProvableS,L is recursively enumerable.

JAVA_Truth is not recursively enumerable.

So ProvableS,L ≠ JAVA_Truth

10

The Halting problem is not decidable.

Hence, JAVA_Truth is not recursively
enumerable.

Hence, JAVA_Truth has no sound and
complete proof system.

Similarly, in the last lecture,
we saw that the existence of integer
roots for Diophantine equations was
not decidable.

Hence, Arithmetic_Truth is not
recursively enumerable.

Hence, Arithmetic_Truth has no sound
and complete proof system!!!!

Hilbert’s Second Question [1900]

Is there a foundation for mathematics that
would, in principle, allow us to decide the
truth of any mathematical proposition?
Such a foundation would have to give us a
clear procedure (algorithm) for making the
decision.

Hilbert

Foundation F

Let F be any foundation for mathematics:

1. F is a proof system that only proves true
things [Soundness]

2. The set of valid proofs is computable.
[There is a program to check any candidate
proof in this system]

(Think of F as (S,L) in the preceding
discussion, with L being sound.)

Gödel’s
Incompleteness Theorem

In 1931, Kurt Gödel stunned the world by
proving that for any consistent axioms F
there is a true statement of first order
number theory that is not provable or
disprovable by F.

I.e., a true statement that can be made
using 0, 1, plus, times, for every, there
exists, AND, OR, NOT, parentheses, and
variables that refer to natural numbers.

Incompleteness

Let us fix F to be any attempt to give a
foundation for mathematics. We have
already proved that it cannot be
sound and complete. Furthermore…

We can even construct a statement
that we will all believe to be true,

but is not provable in F.

11

CONFUSEF(P)

Loop though all sequences of sentences in S

If S is a valid F-proof of “P halts”,

then loop-forever

If S is a valid F-proof of “P never
halts”, then halt.

Program CONFUSEF(P)

Loop though all sequences of
sentences in S

If S is a valid F-proof of “P halts”,

then loop-forever

If S is a valid F-proof of “P never
halts”, then halt.

GODELF =
AUTO_CANNIBAL_MAKER(CONFUSEF)

Thus, when we run GODELF it will do the same
thing as:

CONFUSEF(GODELF)

GODELF =
AUTO_CANNIBAL_MAKER(CONFUSEF)

Thus, when we run GODELF it will do the
same thing as CONFUSEF(GODELF)

Program CONFUSEF(P)

Loop though all sequences of
sentences in S

If S is a valid F-proof of “P halts”,

then loop-forever

If S is a valid F-proof of “P never
halts”, then halt.

Can F prove GODELF halts?

If Yes, then CONFUSEF(GODELF) does not
halt: Contradiction

Can F prove GODELF does not halt?

If Yes , then CONFUSEF(GODELF) halts:
Contradiction

GODELF

And this program does not halt!

F can’t prove or disprove that GODELF halts.

But GODELF = CONFUSEF(GODELF) is the
program:

Loop though all sequences of sentences in S

If S is a valid F-proof of “GODELF halts”, then
loop-forever

If S is a valid F-proof of “GODELF never
halts”, then halt.

No fixed set of assumptions F can
provide a complete foundation for

mathematical proof.

In particular, it can’t prove the true
statement that GODELF does not halt.

12

So What is Mathematics?

We can still have rigorous, precise axioms
that we agree to use in our reasoning (like
the Peano Axioms, or axioms for Set
Theory). We just can’t hope for them to be
complete.

Most working mathematicians never hit
these points of uncertainty in their work,
but it does happen!

