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15-251
Great Theoretical Ideas 
in Computer Science

Thales’ and Gödel’s Legacy: 
Proofs and Their Limitations

Lecture 26 (November 20, 2008)

A Quick Recap of 
the Previous Lecture

The Halting Problem
K = {P | P(P) halts }

Is there a program HALT such that:

• HALT(P)=     yes, if P∈K

• HALT(P)=     no,   if P∉K

HALT decides whether or not any given 
program is in K. 

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to 
solve the halting problem

Computability Theory:
Old Vocabulary

We call a set S⊆Σ* decidable or recursive if 
there is a program P such that:

P(x) = yes, if x∈S

P(x) = no,  if  x∉S

Hence, the halting set K is undecidable
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Computability Theory:
New Vocabulary

We call a set S⊆Σ* enumerable or 
recursively enumerable (r.e.) if there is a 
program P such that:

• P prints an (infinite) list of strings. 

• Any element on the list should be in S.

• Each element in S appears after a finite 
amount of time. 

Is 
the halting set K 

enumerable?

Enumerating K

Enumerate-K {

for n = 0 to forever {  

for W = all strings of length < n do {

if W(W) halts in n steps then output W;

}

}

}

K is not decidable, but 
it is enumerable!

Let K’ = { Java P | P(P) 
does not halt}

Is K’ enumerable?

If both K and K’ are enumerable,
then K is decidable. (why?)

And on to newer topics*

*(The more things change, the more they remain the same…)

What’s a proof?
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Thales Of Miletus (600 BC)
Insisted on Proofs!

“first mathematician”

Most of the starting theorems of geometry. 
SSS, SAS, ASA, angle sum equals 180, . . .

Axioms

In traditional logic, an axiom or postulate is 
a proposition that is not proved or 

demonstrated but considered to be self-
evident. 

Therefore, its truth is taken for granted, 
and serves as a starting point for deducing 

and inferring other truths.

Peano Arithmetic

The Peano axioms formally define the 
properties of  the natural numbers

4. If  n is a natural number and n = m, then m is 
also a natural number. 

1. For every natural number n, n = n 

2. For all natural numbers, if  n = m, then m = n. 

3. For all naturals if  k = m and m = n then k = n. 

5. 0 is a natural number. 

8. For all natural numbers m and n, if  
S(m) = S(n), then m = n. 

6. For every natural number n, its 
“successor”  S(n) is a natural number. 

7. For every natural number n, S(n) ≠ 0.

Peano Arithmetic (contd.)

What is a proof?

Intuitively, a proof  is a sequence of  
“statements”, each of  which 
follows “logically” from some of  
the previous steps. 

What are “statements”? What does 
it mean for one to follow “logically” 
from another?

What are “statements”? What does 
it mean for one to follow “logically” 
from another?

Formally, statements are strings of  
a decidable language S over Σ. 

Intuitively, statements must be stated 
in some language. 

That is, S is a subset of  Σ* and there is a 
Java program PS(x) that outputs Yes if  x 
is in S, and outputs No otherwise.
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This decidable set S is the set of  “syntactically 
valid” strings, or “statements” of  a language. 

Example:
Let S be the set of  all syntactically well 
formed statements in propositional logic.

X ∨ ¬X
(X∧Y) ⇒ Y
∨X¬Y

Typically, language syntax is defined inductively.

This makes it easy to write a recursive program to 
recognize the strings in the language.

(not)

Syntax for Statements in 
Propositional Logic

Variable → X, Y, X1, X2, X3, …

Literal → Variable   |   ¬Variable

Statement →

Literal

¬(Statement)

Statement ∧ Statement

Statement ∨ Statement

Recursive Program to decide S

ValidProp(S) {

return True if any of the following:

S has the form ¬(S1) and ValidProp(S1)

S has the form (S1 ∧ S2) and

ValidProp(S1) AND ValidProp(S2)

S has the form  …..

}

We can now precisely define a 
syntactically valid set of  “statements” 
in a language.

But what is “logic”, and what is 
“meaning”?

For the time being, let us ignore the 
meaning of  “meaning”, and pin down our 
concepts in purely symbolic (syntactic) 
terms.

Define a function LogicS

Given a decidable set of statements S, fix any 
single computable “logic function”:

LogicS: (S ∪ ∆) × S → Yes/No

If Logic(x,y) = Yes, we say that the
statement y is implied by statement x.

We also have a “start statement” ∆ not in S, 
where   
LogicS(∆,x) = Yes will mean that our logic 
views the statement x as an axiom.

A valid proof in logic LogicS

• LogicS(∆, s1) = True

(i.e., s1 is an axiom of our language)

• For all 1 ≤ i ≤ n-1, LogicS(sj,sj+1) = True

(i.e., each statement implies the next one)

• And finally, sn = Q

(i.e., the final statement is indeed Q.)

A sequence s1, s2, …, sn of statements is a 
valid proof of statement Q in LogicS iff
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Provable Statements 
(a.k.a. Theorems)

Let S be a set of statements. 
Let L be a logic function.

Define ProvableS,L = 
All statements Q in S for which
there is a valid proof of Q in logic L.

Example SILLY1

S = All strings.

L = All pairs of the form: <∆, s>, s∈S

ProvableS,L is the set of all strings.

Example: SILLY2

S = All strings over {0,1}.

L = <∆, 0> , <∆, 1>, and

all pairs of the form: <s,s0> or <s, s1>

ProvableS,L is the set of all strings.

Example: SILLY3

S = All strings.

L = <∆, 0> , <∆, 11>, and

all pairs of the form: <s,s0> or <st, s1t1>

ProvableS,L is the set of all strings with an 
even number of 1s

Example: Propositional Logic

S = All well-formed formulas in the notation of

Propositional Logic.

L = Two formulas are one step apart if one 
can be made from the other from a finite list 
of forms. (see next page for a partial list.)
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Example: Propositional Logic

S = All well-formed formulas in the notation of

Propositional Logic.

L = Two formulas are one step apart if one can 
be made from the other from a finite list of 
forms. (see previous page for a partial list.)

(hopefully) ProvableS,L is the set of all 
formulas that are tautologies in 
propositional logic.

Super Important Fact

Let S be any (decidable) set of statements.

Let L be any (computable) logic.

We can write a program to enumerate the 
provable theorems of L.

I.e., ProvableS,L is enumerable.

Enumerating the Set ProvableS,L

for k = 0 to forever do 

{

let PROOF loop through all strings of  length k 

{

let STMT loop through all strings of  length < k

{

if  proofcheckS,L(STMT, PROOF) = Valid

{

output STMT; //this is a theorem

}

}

}

}

Example: Euclid and ELEMENTS

We could write a program ELEMENTS to 
check (STATEMENT, PROOF) pairs to 
determine if PROOF is a sequence, where 
each step is either one logical inference, or 
one application of the axioms of Euclidian 
geometry.

THEOREMSELEMENTS is the set of all statements 
provable from the axioms of Euclidean 
geometry.

Example: Peano and PA.

We could write a program PA to check 
(STATEMENT, PROOF) pairs to determine if 
PROOF is a sequence, where each step is 
either one logical inference, or one 
application of the axioms of Peano 
Arithmetic

THEOREMSPA is the set of all statements 
provable from the axioms of Peano 
Arithmetic

OK, so I see what valid 
syntax is, what logic is, what 
a proof  and what
theorems are…

But where does “truth” and 
“meaning” come in it?
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Let S be any decidable 
language. Let TruthS be any 
fixed function from S to 
True/False.

We say TruthS is a “truth 
concept” associated with the 
strings in S.

Truths of Natural Arithmetic

All TRUE expressions of the 
language of arithmetic (logical 
symbols and quantification over 
Naturals).

Arithmetic_Truth =

Truths of Euclidean Geometry

Euclid_Truth =

All TRUE expressions of the 
language of Euclidean 
geometry.

Truths of JAVA Program Behavior

JAVA_Truth =

All TRUE expressions of the form 
program “P on input X will halt” or 
“not halt”

General Picture

A decidable set of  statements S. 

A computable logic L.

A (possibly uncomputable) 
truth concept 

TruthS: S → {T, F}

We work in logics that we think are related 
to our truth concepts.

A logic L is “sound” for a truth concept 
TruthS if

x in ProvableS,L ⇒ TruthS(x) = T

L is sound for TruthS if
• L(∆, A) = true ⇒TruthS(A)= True

• L(B,C)=True and TruthS(B)=True
⇒ TruthS(C)= True
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L is sound for TruthS means that L can’t prove 
anything false for the truth concept TruthS.

ProvableL,S⇒ TruthS

Example SILLY3

S = All strings.

L = <∆, 0> , <∆, 11>, and

all pairs of  the form: <s,s0> or <st, s1t1>

ProvableS,L is the set of  all strings 
with zero parity.

SILLY3 is sound for the truth concept 
of  an even number of  ones.

Euclidean Geometry is 
sound for the truth concept of  
facts about points and lines in the 
Euclidean plane.

Peano Arithmetic is sound for the 
truth concept of  (first order) 
number facts about Natural 
numbers.

A logic may be sound but it still 
might not be “complete”

A logic L is complete for a truth 
concept TruthS if  it can prove every 
statement that is True in TruthS

Soundness:
ProvableS,L⇒ TruthS

Completeness:
TruthS⇒ ProvableS,L

Example SILLY3

S = All strings.

L = <∆, 0> , <∆, 11>, and

all pairs of  the form: <s,s0> or <st, s1t1>

ProvableS,L is the set of  all strings 
with zero parity.

SILLY3 is sound and complete for the truth 
concept of  an even number of  ones.
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Truth versus Provability

Happy News:

ProvableElements = Euclid_Truth

The Elements of Euclid are 
sound and complete

for (Euclidean) geometry.

Truth versus Provability

Harsher Fact:

ProvablePeanoArith is a proper subset 

of Arithmetic_Truth

Peano Arithmetic is sound.

It is not complete.

Truth versus Provability

F is sound for 
arithmetic will imply 
F is not complete.

Foundational Crisis: 

It is impossible to have a proof system 
F such that

ProvableF,S = Arithmetic_Truth

Here’s what we have

A language S.

A truth concept TruthS.

A logic L that is sound (maybe even 
complete) for the truth concept.

An enumerable list ProvableS,Lof provable 
statements (theorems) in the logic.

JAVA_Truth is Not Enumerable

Suppose JAVA_Truth is enumerable, and the 
program JAVA_LIST enumerates JAVA_Truth.

Can now make a program HALT(P):

Run JAVA_LIST until either of the two 
statements appears: “P(P) halts”, or “P(P) 
does not halt”. 

Output the appropriate answer.

Contradiction of  undecidability of  K.

JAVA_Truth has No Proof System

There is no sound and complete proof 
system for JAVA_Truth.

Suppose there is. Then there must be a 
program to enumerate ProvableS,L.  

ProvableS,L is recursively enumerable. 

JAVA_Truth is not recursively enumerable.

So ProvableS,L ≠ JAVA_Truth
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The Halting problem is not decidable.

Hence, JAVA_Truth is not recursively 
enumerable.

Hence, JAVA_Truth has no sound and 
complete proof  system.

Similarly, in the last lecture, 
we saw that the existence of  integer 
roots for Diophantine equations was 
not decidable.  

Hence, Arithmetic_Truth is not 
recursively enumerable.

Hence, Arithmetic_Truth has no sound 
and complete proof  system!!!!

Hilbert’s Second Question [1900]

Is there a foundation for mathematics that 
would, in principle, allow us to decide the 
truth of any mathematical proposition? 
Such a foundation would have to give us a 
clear procedure (algorithm) for making the 
decision.

Hilbert

Foundation F

Let F be any foundation for mathematics:

1. F is a proof  system that only proves true 
things [Soundness]

2. The set of  valid proofs is computable. 
[There is a program to check any candidate 
proof  in this system]

(Think of  F as (S,L) in the preceding 
discussion, with L being sound.)

Gödel’s 
Incompleteness Theorem

In 1931, Kurt Gödel stunned the world by 
proving that for any consistent axioms F 
there is a true statement of first order 
number theory that is not provable or 
disprovable by F.  

I.e., a true statement that can be made 
using 0, 1, plus, times, for every, there 
exists, AND, OR, NOT, parentheses, and 
variables that refer to natural numbers.

Incompleteness

Let us fix F to be any attempt to give a 
foundation for mathematics. We have 
already proved that it cannot be 
sound and complete. Furthermore…

We can even construct a statement 
that we will all believe to be true, 

but is not provable in F.
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CONFUSEF(P)

Loop though all sequences of sentences in S

If S is a valid F-proof of “P halts”, 

then loop-forever

If S is a valid F-proof of “P never
halts”, then halt.

Program CONFUSEF(P)

Loop though all sequences of  
sentences in S

If  S is a valid F-proof  of  “P halts”, 

then loop-forever

If  S is a valid F-proof  of  “P never
halts”, then halt.

GODELF  = 
AUTO_CANNIBAL_MAKER(CONFUSEF)

Thus, when we run GODELF it will do the same 
thing as:

CONFUSEF(GODELF)

GODELF  = 
AUTO_CANNIBAL_MAKER(CONFUSEF)

Thus, when we run GODELF it will do the 
same thing as CONFUSEF(GODELF)

Program CONFUSEF(P)

Loop though all sequences of  
sentences in S

If  S is a valid F-proof of  “P halts”, 

then loop-forever

If  S is a valid F-proof of  “P never
halts”, then halt.

Can F prove GODELF halts?

If Yes, then CONFUSEF(GODELF) does not 
halt: Contradiction

Can F prove GODELF does not halt?

If Yes , then CONFUSEF(GODELF) halts: 
Contradiction

GODELF

And this program does not halt!

F can’t prove or disprove that GODELF halts.

But GODELF = CONFUSEF(GODELF) is the 
program:

Loop though all sequences of  sentences in S

If  S is a valid F-proof  of  “GODELF halts”, then 
loop-forever

If  S is a valid F-proof  of  “GODELF never 
halts”, then halt.

No fixed set of  assumptions F can 
provide a complete foundation for 

mathematical proof. 

In particular, it can’t prove the true 
statement that GODELF does not halt.
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So What is Mathematics?

We can still have rigorous, precise axioms 
that we agree to use in our reasoning (like 
the Peano Axioms, or axioms for Set 
Theory). We just can’t hope for them to be 
complete. 

Most working mathematicians never hit 
these points of uncertainty in their work, 
but it does happen!


