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We’ve just derived the generating function for Fibonaccis:
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If we can expand this into a power series, then we’ll be able to read off a closed form for F,.
To do so, we'll first apply the quadratic formula to find the roots of 22 + 2z — 1; they’re just
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Thus, we have that
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Next, let’s write this as
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where a and b are chosen so that
a(l = ¢z) + b(1 — ¢2) = 2. (9)
Since this must hold for any z, it follows that a = —b and
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Finally, using the form of the geometric series, we see that
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We’ve derived the following closed form for the nth Fibonacci number:
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Now, since |$| ~ 0.618034, we can see that for large n,
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In fact, it holds that
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where round(z) means the nearest integer to z. It’s also easy to see from this closed form
that ~
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