15-251

Great Theoretical Ideas in Computer Science

Social Networks

Brendan Meeder March 26, 2009

Social Networks (1977)

Friendships in Karate

Friendships in Karate

Friendships in Karate

The Breakup

Mathematical Explanation

The split occurs along a minimum cut separating the two central figures

Individuals sided with the central figure they were closer to

Some Aspects of Social Networks

- Network structure
- Models of network structure
 - Random graphs, power laws, small-world phenomena
- Information flow in networks
 - Fads, rumors, diseases, distributed search
- The visual beauty of networks

Network Structures

Structural Holes

Clusters

Bridges

An edge is a bridge if deleting it would cause its endpoints to lie in different components

Local Bridges

An edge is a local bridge if its endpoints have no common friends

How will this network evolve?

Triadic Closure: If two nodes have common neighbor, there is an increased likelihood that an edge between them forms

Definition: The clustering coefficient of a node v is the fraction of pairs of v's friends that are connected to each other by edges

Clustering Coefficient = 1/2

The higher the clustering coefficient of a node, the more strongly triadic closure is acting on it

What's the "most central node"?

Which Graph is More "Centralized"?

Degree Centrality of a Node

$$C_D(v) = d(v)/(n-1)$$

Number of nodes

Degree centrality is easy to calculate, but it's not a very good measure

Betweenness Centrality of a Node

Short_{jk} = Number of shortest paths from v_j to v_k

Short_{jk}(v_i) = Number of shortest paths from v_j to v_k that pass through v_i

$$C_B(v_i) = \sum_{j < k} short_{jk}(v_i)/short_{jk}$$

$C_B(v_i) = \sum_{j < k} short_{jk}(v_i)/short_{jk}$

Networks with Extra Structure

Signed Graphs

Two-Node Signed Graphs

Complete Three-Node Signed Graphs

Balanced

Four Node Cycles

Unbalanced

Balanced

Definition: A cycle is balanced if the product of its signs is positive

Definition: A graph is balanced if all its cycles are balanced

Example

Theorem: If every 3-cycle in a signed complete graph is balanced, then either (1) all nodes are friends, or (2) the nodes can be divided into two groups, A and B, such that every pair of people in A like each other, every pair of people in B like each other, and everyone in A is the enemy of everyone in B.

- 1. Every two nodes in A are friends
- 2. Every two nodes in B are friends
- 3. Every node in A is an enemy of every node in B

Definition: A signed graph is clusterable if the nodes can be partitioned into a finite number of subsets such every positive edge is between nodes of the same subset, and every negative edge is between nodes of different subsets

Theorem: A signed graph has a clustering if and only if the graph contains no cycles which have exactly one negative edge

Where do the best job leads come from: your close friends or your acquaintances?

Weak Versus Strong Ties

Definition: Node v satisfies the Strong Triadic Closure if, for any two nodes u and w to which it has strong ties, there is an edge between u and w (which can be either weak or strong)

Models of Network Structure

Random Graphs

Figure 1
To appear in Topics in Graph Theory (F. Harary, ed.) New York Academy of Sciences (1979).

Random Graphs

- Graph with N people
- For every pair (i,j) of people in the graph, add the edge (i,j) with probability p
- Called the Erdos-Renyi model G(n,p): n vertices, each possible edge occurs with probability p

Some Properties of G(n,p)

How many "clusters" (i.e. connected components with at least 5% of the population) does the global friendship graph have?

The GIANT Component

Many (most?) real-world networks don't follow the Erdos-Renyi model!

Real networks are often "scale-free"

Degree Distribution in Flickr

Milgram's Small World

The reason the small world phenomenon is surprising is that the human social network is highly clustered

The Beauty of Networks

Here's What You Need to Know...

Network Structures

- Structural holes, cliques, clusters, bridges, local bridges
- Balanced cycles and graphs
- Strong triadic closure

Network Measures

Degree centrality, betweenness centrality

Graph Models

- Erdos-Renyi model
- Real-world networks have powerlaw degree distribution