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Ideas from the course

Induction
Numbers
Finite Counting and Probability
A hint of the infinite
Infinite row of dominoes
Infinite sums (Generating functions!!)
Infinite choice trees, and infinite  

probability 
Infinite tapes



The Ideal Computer:
no bound on amount of memory

no bound on amount of time

Ideal Computer is defined as a 
computer with infinite RAM. 

You can run a Java program and never have 
any overflow, or out of memory errors.



Infinite RAM Model

Platonic Version:
One memory location for each 
natural number 0, 1, 2, …

Aristotelian Version:
Whenever you run out of memory, 
the computer contacts the factory. 
A maintenance person is flown by 
helicopter and attaches 1000 Gig of 
RAM and all programs resume their 
computations, as if they had never 
been interrupted.

http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Aristotle.html


Here’s a program

System.out.print(“0.”);
for(int i=0;true;i++)
{ 

System.out.print( getDigit(i) );
}



Here’s a program

int getDigit(int i)
{

return 3;
}



Here’s a program

int getDigit(int i)
{

return i%10;
}



Here’s a program

Can we do:

Pi?
e?
Any real?



Chudnovsky 
brothers



An Ideal Computer

It can be programmed to print out:

2: 2.0000000000000000000000…
1/3: 0.3333333333333333333333…
φ: 1.6180339887498948482045…
e: 2.7182818284590452353602…
π: 3.14159265358979323846264…



Printing Out An Infinite 
Sequence..

A program P prints out the infinite sequence 
s0, s1, s2, …, sk, …

if when P is executed on an ideal computer, it 
outputs a sequence of symbols such that

-The kth symbol that it outputs is sk

-For every k, P eventually outputs the kth symbol. 
I.e., the delay between symbol k and symbol k+1 is 
not infinite.



Computable Real Numbers

A real number R is computable if there is a 
program that prints out the decimal representation 
of R from left to right. 

Thus, each digit of R will eventually be output.

Are all real numbers 
computable?



Describable Numbers

A real number R is describable if it can be denoted 
unambiguously by a finite piece of English text.

2: “Two.”
π: “The area of a circle of radius one.”

Are all real numbers 
describable?



Is every 
computable real number, 

also a describable real 
number?

And what about the other 
way?

Computable R: some program outputs R
Describable R: some sentence denotes R



Computable ⇒ describable

Theorem:
Every computable real is also describable



Computable ⇒ describable

Theorem:
Every computable real is also describable

Proof: 
Let R be a computable real that is output by a   
program P. The following is an unambiguous
description of R:

“The real number output by the 
following program:” P



MORAL: A computer 
program can be viewed as a 

description of  its output.

Syntax: The text of  the program
Semantics: The real number output by P



Are all reals describable?
Are all reals computable?

We saw that
computable ⇒
describable, 

but do we also have
describable ⇒
computable?

Questions we will answer in this (and next) lecture…



Little Susie



Little Johnny



Little Susie and Little Johnny

Little Susie: I hate you
Little Johnny: I hate you more
Little Susie: I hate you times a zillion
Little Johnny: I hate you times infinity

Plus one!

Little Susie: I hate you times infinity



Susie’s mistake

Infinity: N.
Infinity plus one : N U {cupcake} 

Can we establish a bijection between 
N and N U {cupcake}?



Susie’s mistake

Sure!
f : N -> N U {cupcake}
f(x) = cupcake if x=0
f(x) = x-1 if x>0

0     

1     0

2 1

3 2

4 3

5 4

… …



Correspondence Principle

If two finite sets can be placed into 
1-1 onto correspondence, then they 

have the same size.

That is, if  there exists a bijection
between them.



Correspondence Definition

In fact, we can use the correspondence as 
the definition: 

Two finite sets are defined to have the 
same size if and only if they can be placed 

into 1-1 onto correspondence.



Georg Cantor (1845-1918)



Cantor’s Definition (1874)

Two sets are defined to have 
the same size if and only if they can be 
placed into 1-1 onto correspondence.



Cantor’s Definition (1874)

Two sets are defined to have 
the same cardinality if and only if 

they can be placed into 
1-1 onto correspondence.

Therefore, N and N U {cupcake} have the 
same cardinality.



Do N and E have the same cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, … }

E = { 0, 2, 4, 6, 8, 10, 12, … }
The even, natural numbers.



E and N do not have the 
same cardinality! E is a 
proper subset of  N with 

not one element left 
over, but an INFINITE 

amount!



E and N do have the 
same cardinality!

N = 0, 1, 2, 3, 4, 5, … 
E = 0, 2, 4, 6, 8,10, …

f(x) = 2x is 1-1 onto.  



Lesson: 

Cantor’s definition only 
requires that some 1-1 

correspondence between the 
two sets is onto, not that all 1-1 

correspondences are onto. 

This distinction never arises 
when the sets are finite.



Cantor’s Definition (1874)

Two sets are defined to have 
the same size if and only if they can be
placed into 1-1 onto correspondence.



You just have to get used 
to this slight subtlety in 

order to argue about 
infinite sets!



Do N and Z have the same cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, … }

Z = { …, -2, -1, 0, 1, 2, 3, … }



No way!  Z is infinite in two 
ways: from 0 to positive 

infinity and from 0 to 
negative infinity.  

Therefore, there are far 
more integers than 

naturals.

Actually, no!



N and Z do have the same
cardinality!

N = 0, 1,  2, 3,  4, 5,   6 …
Z = 0, 1, -1, 2, -2, 3, -3, ….

f(x) =  ⎡x/2⎤ if  x is odd
-x/2    if  x is even



Transitivity Lemma

Do E and Z have the same cardinality?



Transitivity Lemma

Lemma: If 
f: A→B is 1-1 onto, and 
g: B→C is 1-1 onto.

Then h(x) = g(f(x)) defines a function
h: A→C that is 1-1 onto

Hence, N, E, and Z all have the same 
cardinality.



Do N and Q have the same cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, …. }

Q = The Rational Numbers



No way!

The rationals are dense: 
between any two there is a 

third. You can’t list them 
one by one without leaving 
out an infinite number of  

them.



Don’t jump to conclusions!

There is a clever way to list 
the rationals, one at a time, 

without missing a single 
one!



First, let’s warm up 
with another 

interesting example:
N can be paired with 

NxN



Theorem: N and NxN have the 
same cardinality



Theorem: N and NxN have the 
same cardinality

0 1 2 3 4 …

…

4

3

2

1

0

The point (x,y)
represents 
the ordered 

pair (x,y)



Theorem: N and NxN have the 
same cardinality

0 1 2 3 4 …

…

4

3

2

1

0 0

1

2

3

4

5

6

7

8

9

The point (x,y)
represents 
the ordered 

pair (x,y)



Defining 1-1 onto f: N -> NxN

int sum;
for (sum = 0;true;sum++) {

//generate all pairs with this sum
for (x = 0;x<=sum;x++) {
y = sum-x;

System.out.println(x+“ ”+ y);
}

} 



Onto the Rationals!



The point at x,y represents x/y



The point at x,y represents x/y



Hold it!

You’ve included both 1,1 and 2,2 –
They correspond to the same rational.

Also, 0/0, 1/0, 2/0, … are not rational!



Hold it!

0 0/0
1 0/1
2 1/1
3 1/0
4 1/-1
5 0/-1
6 -1/-1

7 -1/0
8 -1/1
9 -1/2
10 0/2
11 1/2
12 2/2
13 2/1

14 2/0
15 2/-1
16 2/-2
17 1/-2
18 0/-2
19 -1/-2
20 -2/-2



Hold it!

0 0/0
1 0/1
2 1/1
3 1/0
4 1/-1
5 0/-1
6 -1/-1

7 -1/0
8 -1/1
9 -1/2
10 0/2
11 1/2
12 2/2
13 2/1

14 2/0
15 2/-1
16 2/-2
17 1/-2
18 0/-2
19 -1/-2
20 -2/-2



Hold it!

0
1 0/1
2 1/1
3
4 1/-1
5
6

7
8
9 -1/2
10
11 1/2
12
13 2/1

14
15 2/-1
16
17
18
19
20



Hold it!

0    0/1
1 1/1
2 1/-1
3 -1/2
4 1/2
5 2/1
6 2/-1



Hold it!

It’s okay. We can just skip those. So 
instead of assigning 0 to 0/0 we will

assign it to 0/1, and so on.

This way, we’ll use all the naturals and 
we’ll hit all the rationals without 

duplication.



Cantor-Bernstein-Schroeder

If there exists an injection from A to B 
and an injection from B to A, then 

there exists a bijection between B and 
A.

Easy to prove for finite sets, trickier 
for infinite sets.



Cantor-Bernstein-Schroeder

Injection from N to Q

f(x) = x

Injection from Q to N



The point at x,y represents x/y



Injection from Q to N

0
1 0/1
2 1/1
3
4 1/-1
5
6

7
8
9 -1/2
10
11 1/2
12
13 2/1

14
15 2/-1
16
17
18
19
20



Injection from Q to N

0
1 0/1
2 1/1
3
4 1/-1
5
6

7
8
9 -1/2
10
11 1/2
12
13 2/1

14
15 2/-1
16
17
18
19
20



Cantor-Bernstein-Schroeder

Injection from Q to N

Just eliminate the invalid matchings. 
We match all the valid rationals and 

never duplicate a natural.

While this misses some naturals, it’s 
still an injection.



Countable Sets

We call a set countable if it can be 
placed into 1-1 onto correspondence 

with the natural numbers N.

Hence
N, E, Q, and Z are all countable



Do N and R have the same cardinality?

N = { 0, 1, 2, 3, 4, 5, 6, 7, … }

R = The Real Numbers



No way!

You will run out of  
natural numbers long 
before you match up 

every real.



Now hang on a minute!

You can’t be sure that 
there isn’t some clever 

correspondence that you 
haven’t thought of  yet.



I am sure!
Cantor proved it.

To do this, he invented a 
very important technique 

called
“Diagonalization”



Theorem: The set of reals 
between 0 and 1 is not countable.

Proof: (by contradiction)
Suppose R [0,1] is countable. 
Let f be a 1-1 onto function from N to R[0,1]. 

Make a list L as follows:

0: decimal expansion of f(0)
1: decimal expansion of f(1)
…

k: decimal expansion of f(k)
…



Theorem: The set of reals 
between 0 and 1 is not countable.

Proof: (by contradiction)
Suppose R[0,1] is countable. 
Let f be a 1-1 onto function from N to R[0,1]. 

Make a list L as follows:

0: 0.33333333333333333…
1:  0.314159265657839593…
…

k: 0.235094385543905834…
…



L 0 1 2 3 4 …

0

1

2

3

…

In
d

e
x

Position after decimal point



L 0 1 2 3 4 …

0 3 3 3 3 3 3

1 3 1 4 1 5 9

2 1 2 4 8 1 2

3 4 1 2 2 6 8

…

In
d

e
x

Position after decimal point



L 0 1 2 3 4 …

0 d0

1 d1

2 d2

3 d3

… …

digits along 
the diagonal



L 0 1 2 3 4

0 d0

1 d1

2 d2

3 d3

… …

Define the following real number
ConfuseL = . C0 C1 C2 C3 C4 C5 …



L 0 1 2 3 4

0 d0

1 d1

2 d2

3 d3

… …

Define the following real number
ConfuseL = . C0 C1 C2 C3 C4 C5 …

5, if   dk=6

6, otherwise
Ck=



L 0 1 2 3 4

0

1 d1

2 d2

3 d3

… …

5, if   dk=6

6, otherwise
Ck=

C0≠d0 C1 C2 C3 C4 …



L 0 1 2 3 4

0 d0

1

2 d2

3 d3

… …

5, if   dk=6

6, otherwise
Ck=

C0  C1≠d1 C2 C3 C4 …



L 0 1 2 3 4

0 d0

1 d1

2

3 d3

… …

5, if   dk=6

6, otherwise
Ck=

C0       C1   C2≠d2 C3 C4 …



By design, ConfuseL can’t be on the list L!

ConfuseL differs from the kth element on the 
list L in the kth position. 

This contradicts the assumption that 
the list L is complete; i.e., that the map

f: N to R[0,1] is onto.

Diagonalized!



The set of  reals is 
uncountable!

(Even the reals between 0 
and 1.)

An aside:  you can set up a
correspondence between R and R[0,1] .



Hold it!
Why can’t the same 
argument be used to 
show that the set of  

rationals Q is 
uncountable?



The argument is the same 
for Q until the punchline. 

However, since CONFUSEL
is not necessarily rational, 
there is no contradiction 

from the fact that it is 
missing from the list L.



Back to the questions 
we were asking earlier



Are all reals describable?
Are all reals computable?

We saw that
computable ⇒
describable, 

but do we also have
describable ⇒
computable?



Standard Notation

Σ = Any finite alphabet
Example: {a,b,c,d,e,…,z}

Σ∗ = All finite strings of symbols from Σ 
including the empty string ε



Theorem: Every infinite subset S 
of Σ* is countable

Proof: 
Sort S by first by length and then 
alphabetically. 

Map the first word to 0, the second 
to 1, and so on….



Stringing Symbols Together

Σ = The symbols on a standard keyboard

For example:

The set of all possible Java programs is a 
subset of Σ∗

The set of all possible finite pieces of 
English text is a subset of Σ∗



Thus:

The set of  all possible Java 
programs is countable.

The set of  all possible finite 
length pieces of  English 

text is countable.



There are countably 
many Java program and 
uncountably many reals.

Hence,
Most reals are not 

computable!



I see!
There are countably many 

descriptions and 
uncountably many reals.

Hence:
Most real numbers are

not describable!



Are all reals describable?
Are all reals computable?

We saw that
computable ⇒
describable, 

but do we also have
describable ⇒
computable?

NO

NO



Is there a real number 
that can be described, 

but not computed?

Wait till the
next lecture!



We know there are at least 
2 infinities.

(the number of  naturals,
the number of  reals.)

Are there more?



Definition: Power Set

The power set of S is the set of all 
subsets of S. 

The power set is denoted as P(S).

Proposition: 
If S is finite, the power set of S has  
cardinality 2|S|



Theorem: S can’t be put into bijection with P(S)



Since f  is onto, exists y ∈ S such that f(y) = CONFUSEf.

A

B

C

S

{B}{A}

{C}

P(S)

{A,B}

{B,C} {A,C}

{A,B,C}

Suppose f:S → P(S) is a bijection.

Theorem: S can’t be put into bijection with P(S)

Let CONFUSEf contain all and only those elements 
that are not in the sets they map to

Is y in CONFUSEf?

YES: Definition of  CONFUSEf implies no

NO: Definition of  CONFUSEf implies yes



This proves that there are at 
least a countable number of  

infinities.

The first infinity is called:

ℵ0



|N|, |P(N)|, |P(P(N))|, …

Are there any 
more infinities?



N, P(N), P(P(N)), …

Let S be the union of  all 
of  them!

Then S cannot be 
bijected to any of  them!



In fact, the same 
argument can be used to 

show that no single 
infinity is big enough to 

count the number of  
infinities!



Cantor wanted to 
show that there was 

no infinity between |N| 
and |P(N)|



Cantor called his 
conjecture the

“Continuum Hypothesis.”  

However, he was unable to 
prove it.  This helped fuel 

his depression.



The Continuum 
Hypothesis can’t be 

proved or disproved from 
the standard axioms of  

set theory!

This has been proved!



Little Susie and Little Johnny

What Little Susie should’ve said to 
Little Johnny:

Little Johnny: I hate you times infinity

Little Susie: I hate you times 2 to the 
infinity!

Little Johnny: I hate you times 2 to the 
2 to the infinity!

…



Here’s What 
You Need to 

Know…

Cantor’s Definition: 
Two sets have the same cardinality if  

there exists a bijection between them.

|E| = |N| = |Z| = |Q| (and proofs),

Cantor-Bernstein-Schroeder

Proof  that there is no 
bijection between N and R

Countable 
versus Uncountable

Power sets and their properties
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