CS:APP Chapter 4
Computer Architecture

Wirap-Up

Randal E. Bryant

Carnegie Mellon University

http://csapp.cs.cmu.edu

CS:APP2e

Qverview

Wrap-Up of PIPE Design

m Exceptional conditions
m Performance analysis
m Fetch stage design

Modern High-Performance Processors
m Out-of-order execution

CS:APP2e

Exceptions

m Conditions under which processor cannot continue normal

operation
Causes
m Halt instruction (Current)
m Bad address for instruction or data (Previous)
m Invalid instruction (Previous)

Typical Desired Action

m Complete some instructions
® Either current or previous (depends on exception type) —

m Discard others

m Call exception handler
® Like an unexpected procedure call

Our Implementation

m Halt when instruction causes exception

-3 - CS:APP2e

Exception Examples

Detect in Fetch Stage

jmp $-1 # Invalid jump target
-byte OxFF # Invalid instruction code
halt # Halt instruction

Detect in Memory Stage

irmovl $100,%eax
rmmovIl %eax,0x10000(%eax) # invalid address

4 CS:APP2e

Exceptions in Pipeline Processor #1

demo-excl.ys
irmovl $100,%eax
rmmovIl %eax,0x10000(%eax) # Invalid address

nop
-byte OxFF # Invalid instruction code
0x000: irmovl $100,%eax F|D[E[m][w] ~—FExceptiondetected
0x006: rmmovl %eax,0x1000(%eax) | FE | D | E [M]
0x00c: nop F|D]|E
0x00d: .byte OxFF _F | D

Exception detected -

Desired Behavior
= rmmovIl should cause exception

m Following instructions should have no effect on processor
-5- State CS:APP2e

Exceptions in Pipeline Processor #2

demo-exc2.ys

0x000: xorl %eax,%eax # Set condition codes
0x002: Jjne t # Not taken
0x007: irmovl $1,%eax
0x00d: irmovl $2,%edx
0x013: halt
Ox014: t: .byte OxFF # Target
0x000: xorl Y%eax,%eax F|I DIE[M|W
0x002: Jjne t F| D| E| M
Ox014: t: .byte OxFF F(D|E|M|W
Ox???: (1°m lost!) F | DI E|M|W
0Ox007: irmovl $1,%eax / F|ID|E|[M|W

Exception detected
Desired Behavior

m No exception should occur

—6-— CS:APP2e

Maiintaiining Exception Ordering

stat valC valA valB dstE | dstM | srcA | srcB

1l

icode| ifun

icode| ifun rA rB valC valP

predPC

m Add status field to pipeline registers

m Fetch stage sets to either “AOK,” “ADR” (when bad fetch
address), “HLT” (halt instruction) or “INS” (illegal instruction)

m Decode & execute pass values through
m Memory either passes through or sets to “ADR”
m Exception triggered only when instruction hits write back

CS:APP2e

Exception Handling Logjic
Fetch Stage

Determine status code for fetched i1nstruction
int T stat = [
imem_error: SADR;
linstr_valid : SINS;
T 1code == IHALT : SHLT;
1 : SAOK;
1:
Memory Stage

Update the status

int m_stat = [
dmem_error : SADR;
1 - M _stat;

1;

Writeback Stage

int Stat = [
SBUB 1n earlier stages indicates bubble
W _stat == SBUB : SAOKj;
1 : W stat;

1;

_8—

icode I

- dmem_error

B

Execute

icode

Decode

- B

imem_emo
instr_walid j

Fetch

Side Effects in Pipeline Processor

demo-exc3.ys
irmovl $100,%eax

rmmovl %eax,0x10000(%eax) # invalid address

addl %eax,%eax # Sets condition codes
0x000: irmovl $100,%eax F|D[E[m][w] ~—FExceptiondetected
0x006: rmmovl %eax,0x1000(%eax) | F | D | E | M
Ox00c: addl %eax,%eax F D| E

Condition code set

Desired Behavior
= rmmovIl should cause exception
m No following instruction should have any effect

9 CS:APP2e

Avoiding Side Effects

Presence of Exception Should Disable State Update

m Invalid instructions are converted to pipeline bubbles
® Except have stat indicating exception status

m Data memory will not write to invalid address

m Prevent invalid update of condition codes
® Detect exception in memory stage
® Disable condition code setting in execute
® Must happen in same clock cycle

m Handling exception in final stages
® \When detect exception in memory stage

» Start injecting bubbles into memory stage on next cycle
® \When detect exception in write-back stage

» Stall excepting instruction
m Included in HCL code

—10 —

CS:APP2e

Control Logic for State Changes

Setting Condition Codes

Should the condition codes be updated?

bool set cc = E _1code == I0PL &&
State changes only during normal operation
Im_stat in { SADR, SINS, SHLT }
&& "W _stat in { SADR, SINS, SHLT };

Stage Control
m Also controls updating of memory

Start iInjecting bubbles as soon as exception passes
through memory stage
bool M _bubble = m _stat in { SADR, SINS, SHLT }

|| W stat in { SADR, SINS, SHLT };

Stall pipeline register W when exception encountered
bool W _stall = W_stat in { SADR, SINS, SHLT };

- 11 -

[~

Execute

icode

Decode

Rest of Real-Life Exception Handling

Call Exception Handler

m Push PC onto stack
® Either PC of faulting instruction or of next instruction
® Usually pass through pipeline along with exception status

m Jump to handler address
® Usually fixed address
® Defined as part of ISA

Implementation
m Haven't tried it yet!

12— CS:APP2e

Performance Metrics

Clock rate
m Measured in Gigahertz

m Function of stage partitioning and circuit design
® Keep amount of work per stage small

Rate at which instructions executed
m CPI: cycles per instruction

m On average, how many clock cycles does each instruction
require?

m Function of pipeline design and benchmark programs
® E.g., how frequently are branches mispredicted?

- 13 - CS:APP2e

CPI for PIPE

CPl=1.0

m Fetch instruction each clock cycle

m Effectively process new instruction almost every cycle
® Although each individual instruction has latency of 5 cycles

CPI>1.0

B Sometimes must stall or cancel branches

Computing CPI
m Cclock cycles
m | instructions executed to completion
m B bubbles injected (C =1+ B)
CPI = C/ = (I+B)/I = 1.0 + B/l
m Factor B/l represents average penalty due to bubbles

—14 — CS:APP2e

CPI for PIPE (Cont.)

— 15—

B/l =LP + MP + RP

LP: Penalty due to load/use hazard stalling ~ 'YPical values

® Fraction of instructions that are loads 0.25
® Fraction of load instructions requiring stall 0.20
® Number of bubbles injected each time 1

= LP=0.25*0.20*1=0.05
MP: Penalty due to mispredicted branches

® Fraction of instructions that are cond. jumps 0.20
® Fraction of cond. jumps mispredicted 0.40
® Number of bubbles injected each time 2

= MP=0.20*0.40*2=0.16

RP: Penalty due to ret instructions

® Fraction of instructions that are returns 0.02
® Number of bubbles injected each time 3
= RP=0.02*3=0.06

Net effect of penalties 0.05 + 0.16 + 0.06 = 0.27

= CPl=1.27 (NOt badl) CS:APP2e

Fetch Logjic Revisited

During Fetch Cycle
1. Select PC

2. Read bytes from
Instruction memory

3. Examine icode to
determine
instruction length

4. Increment PC
Timing
m Steps 2 & 4 require

significant amount
of time

—16 —

M_icode

u stat |icode

=

PC
increment

Split Align |}
| Byte0 |Bries 15

imem_error

Instruction
memory

M_Bch
M_valA
W_icode

CS:APP2e

Standard Fetch Timing

17 -

Select PC

\

Mem. Read

need regids, need valC

|

Increment

—~
1 clock cycle

m Must Perform Everything in Sequence

m Can’t compute incremented PC until know how much to
iIncrement it by

CS:APP2e

A Fast PC Increment Circuit

incrPC

High-order 29 bits Low-order 3 bits

MUX carry

29-bit :
Slow < incre- - 3-bit adder > Fast
menter

n'eed_regids

High-order 29 bits P need ValC

i Low-order 3 bits

PC

—-18 — CS:APP2e

Modified Fetch Timing:

need regids, need valC

Select PC \3-bit ~dd
\ Mem. Read | | UX
1
ncrementer \
b — Standard cycle

Y
1 clock cycle

29-Bit Incrementer
m Acts as soon as PC selected
m Qutput not needed until final MUX
m Works in parallel with memory read

—-19 - CS:APP2e

More Realistic Fetech Logic

Other PC Controls

I_‘_\

Il

Fetch
Control

Instr.
Length

Byte O

Bytes 1-5

A 4

Instruction
Cache

Current
Instruction

1

Current Block

t

Next Block

Fetch Box

m Integrated into instruction cache

m Fetches entire cache block (16 or 32 bytes)
m Selects current instruction from current block

m Works ahead to fetch next block
® As reaches end of current block

® At branch target

- 20—

CS:APP2e

Modern CPU Design

- 21 —

Instruction Control
T T T T T LT LI Lr Address

Register structiony
File
Operations
Register| : Prediction
Updates| : OK?
4

Operation Results

Executio

CS:APP2e

Instruction Control

Instruction Control
Address

Register structiony
File

v Operations

Grabs Instruction Bytes From Memory
m Based on Current PC + Predicted Targets for Predicted Branches

m Hardware dynamically guesses whether branches taken/not taken
and (possibly) branch target

Translates Instructions Into Operations

m Primitive steps required to perform instruction
m Typical instruction requires 1-3 operations

Converts Register References Into Tags
m Abstract identifier linking destination of one operation with sources

— 22 —

of later operations

CS:APP2e

Executlion Register Prediction Operations

U . Updates t OK?

Operation Results

Data

Execution

m Multiple functional units
® Each can operate in independently

m Operations performed as soon as operands available
® Not necessarily in program order
® Within limits of functional units

m Control logic
® Ensures behavior equivalent to sequential program execution

— 23— CS:APP2e

CPU Capabilities of Intel iCore7

Multiple Instructions Can Execute in Parallel
m 1 load

m 1 store

m 1 FP multiplication or division

m 1 FP addition

m > 1 integer operation

Some Instructions Take > 1 Cycle, but Can be Pipelined

m Instruction Latency Cycles/Issue
m Load / Store 3 1
m Integer Multiply 3 1
m Integer Divide 11—21 5—13
m Double/Single FP Multiply 4 1
m Double/Single FP Add 3 1
m Double/Single FP Divide 10—15 6—11

— 24 — CS:APP2e

iCore Operation

Translates instructions dynamically into “Uops”
m ~118 bits wide
m Holds operation, two sources, and destination

Executes Uops with “Out of Order” engine

m Uop executed when
® Operands available
® Functional unit available

m Execution controlled by “Reservation Stations”
® Keeps track of data dependencies between uops
® Allocates resources

_ o5 _ CS:APP2e

High-Perforamnce Branch Prediction

Critical to Performance
m Typically 11-15 cycle penalty for misprediction

Branch Target Buffer
m 512 entries
m 4 bits of history

m Adaptive algorithm
® Can recognize repeated patterns, e.g., alternating taken—not
taken

Handling BTB misses
m Detectin ~cycle 6

m Predict taken for negative offset, not taken for positive
® Loops vs. conditionals

— 26 — CS:APP2e

Example Branch Prediction

Branch History

m Encode information about prior history of branch
Instructions

m Predict whether or not branch will be taken

NT NT NT

:/—\ :/—\ >
T @) <Yes?> < NO? > (@ NT
‘ N | N |

T T T

State Machine
m Each time branch taken, transition to right
m When not taken, transition to left
m Predict branch taken when in state Yes! or Yes?

o7 _ CS:APP2e

Processor Summary

Design Technique

m Create uniform framework for all instructions
® \Want to share hardware among instructions

m Connect standard logic blocks with bits of control logic

Operation
m State held in memories and clocked registers
m Computation done by combinational logic

m Clocking of registers/memories sufficient to control overall
behavior

Enhancing Performance

m Pipelining increases throughput and improves resource
utilization

m Must make sure to maintain ISA behavior
- 28 — CS:APP2e

	Slide Number 1
	Overview
	Exceptions
	Exception Examples
	Exceptions in Pipeline Processor #1
	Exceptions in Pipeline Processor #2
	Maintaining Exception Ordering
	Exception Handling Logic
	Side Effects in Pipeline Processor
	Avoiding Side Effects
	Control Logic for State Changes
	Rest of Real-Life Exception Handling
	Performance Metrics
	CPI for PIPE
	CPI for PIPE (Cont.)
	Fetch Logic Revisited
	Standard Fetch Timing
	A Fast PC Increment Circuit
	Modified Fetch Timing
	More Realistic Fetch Logic
	Modern CPU Design
	Instruction Control
	Execution�Unit
	CPU Capabilities of Intel iCore7
	iCore Operation
	High-Perforamnce Branch Prediction
	Example Branch Prediction
	Processor Summary

