
Using the Machines at the PSC

Sections
1.) Overview of Systems at the PSC
2.) Connecting
3.) Compiling
4.) Submitting Jobs
5.) Useful References

1.) Overview of Systems at the PSC
 The PSC has three main systems that you can use to run your projects on: The
Intel Cluster, the Cray T3E (jaromir), and the TCSini (Lemieux terascale system).

 Intel Cluster: This cluster has twenty compute nodes each with 4 processors that
share 1 Gbyte of memory and a 512 Kbyte cache. Ten of the nodes have 400 Mhz
Pentium II Xeon Processors, and ten have 550 Mhz Pentium III Xeon processors. All the
nodes run Linux. They are connected by a 100 Mbps switch. Intranode communication
use shared memory; internode communication uses the switch (i.e. message passing).
MPI will handle both intranode and internode communication. This cluster is accessed
through a 2 processor front end where all compilation is performed.

 Cray T3E: The T3E has three types of processing elements (PEs): 8 OS PEs
accessible by the system only. 23 command PEs accessible by users for editing and
compiling. These nodes can also be accessed through several default batch queues. 512
application PEs consisting of Digital Alpha 64-bit microprocessors running at 450 Mhz.
These can be accessed both interactively and in batch mode.

 TCSini: Lemieux comprises 750 Compaq Alphaserver ES45 nodes and two
separate front end nodes. Each computational node contains four 1-GHz processors and
runs the Tru64 Unix operating system. A Quadrics interconnection network connects the
nodes. Each node is a 4 processor SMP, with 4 Gbytes of memory.

2.) Connecting

Reminder: Changing your password on one machine does not change it on the others.
Keep your user account information form with your default password until you have
changed it on all machines.

 Intel Cluster: ssh intel2.psc.edu –X –l username

 Cray T3E: ssh jaromir.psc.edu –X –l username

 TCSini: ssh lemieux.psc.edu –X –l username

Use far or scp to transfer files to or from any of them machines (they will not accept a
connection via ftp).
For downloading:
 scp username@remote_machine_name:filename local_filename
For uploading:
 scp local_filename username@remote_machine_name:filename

3.) Compiling
 Programs on these machines can be written using the MPI message passing
library. MPICH is a free implementation of MPI and is also included on the Intel Cluster
and may create code with faster execution times. Compiling in with MPICH is very
similar to compiling with MPI.

 Intel Cluster: This machine has several compilers available for C, C++,
Fortran77, Fortran90, and Java. The C and C++ compilers are the GNU compilers and
the Portland compilers. It is recommended that you use MPICH on this machine as it is
optimized for its architecture. The compiler scripts are all called mpicc or mpiCC and are
located in:
 /usr/local/packages/compilerName/bin/
The header file to be used in the include directive is located in:
 /usr/local/packages/compilerName/include/
where compilerName is either mpi or mpich. To compile with mpi or mpich use a
command line similar to:
 /usr/local/packages/compilerName/bin/mpicc –o progName progName.c
for C or
 /usr/local/packages/compilerName/bin/mpiCC –o progName progName.cpp
for C++.

 Cray T3E: A sample makefile is located at:

 http://www.psc.edu/machines/cray/t3e/t3eprogenvmake.html

Edit a copy of this makefile for your purposes and use it to compile.

 TCSini: Use the include directive:
 #include <mpi.h>
 For C compile with:
 cc program.c –lmpi –lelan
 For C++ compile with either the Compaq compiler:
 cxx program.cpp –lmpi –lelan
 or the GNU compiler:
 c++ program.cpp –lmpi –lelan

4.) Submitting Jobs

 Intel Cluster: Jobs are not to be run on the front end nodes. Please submit them
to the parallel queue using the qsub command and a script. All jobs must use a minimum

of 2 nodes and are limited to 450 hours of CPU time across all processors used in the job.
Also, jobs do not share nodes; we are charged by node not by processor.

 Create a .rhosts file in your home directory containing:

intel2 yourusername
cog20 yourusername
cog19 yourusername
cog18 yourusername
cog17 yourusername
cog16 yourusername
cog15 yourusername
cog14 yourusername
cog13 yourusername
cog12 yourusername
cog11 yourusername
cog10 yourusername
cog1 yourusername
cog2 yourusername
cog3 yourusername
cog4 yourusername
cog5 yourusername
cog6 yourusername
cog7 yourusername
cog8 yourusername

 cog9 yourusername

Also create a PBSnodefile with the only the first column (no username)
in your home directory (you may fine that the .rhosts file is
unnecessary). Give both of the files a file protection of 400:

 chmod 400 .rhosts PBSnodefile

Copy their template script called ‘/usr/skel/pbs_PGexample.sh’ to your
home directory and set the file protection to 755. Edit a copy of this
for your jobs as follows:

 Uncomment the line that defines BINARY and set it equal to the
full path name of your compiled executable (no quotes).
 Add the lines:

 P4_SOCKBUFSIZE=0x40000
 P4_GLOBMEMSIZE=33554432

 Change the definition of the PBS_NODEFILE in the line where it checks to see if
it equals “NONE” to be the one you created in your home directory.

 Edit the line:

 #PBS –l nodes=2:PIII:ppn=4

to indicate the number of nodes you want that the number of processors per node. Also,
PIII indicates you want to use the 550 Mhz processors, and PII indicates you want to use

the 400 Mhz processors. These #PBS directives set the command line parameters for the
qsub command. See the qsub manpage for more information.

Submit the job using your script to PBS with the following command:

 qsub my_PGexample.sh

where my_PGexample.sh is the name of your script.

 Cray T3E: To run a program on the T3E use the command:

 Mpprun –nX progName

where X is the number of PEs you want to use.

To submit a job for batch access use the qsub command:

 qsub jobfile

Batch jobs can also be submitted via ftp. See the following link for details:

 http://www.psc.edu/machines/cray/t3e/access/ftp.html

 TCSini: Use the qsub command to submit batch jobs:

 qsub jobScript.sh

 An example job script is:

 #!/bin/csh
 #PBS -l walltime=5:00:00
 #PBS -l rmsnodes=4:16
 #PBS -j oe

 set echo

 # execute program
 prun -N ${RMS_NODES} -n ${RMS_PROCS} ./a.out

The first #PBS directive sets the wall clock time limit (for 5 hours). The second directive
requests 16 processors on 4 contiguous nodes (remember each node has four processors).
By default prun allocates in block mode (so processes 0,1,2, and 3 in the example above
would all share the same node). This can be changed with the –m cyclic option to cause
a cyclic ordering of processes on nodes. Jobs do not share nodes. The third directive
combines the stdout and stderror into one file.

5.) Useful References

 If you have any questions or want more details please use the following links:

 http://www.psc.edu/machines/intel/intel.html
 http://www.psc.edu/machines/cray/t3e/t3e.html
 http://www.psc.edu/machines/tcs/

 If you have any questions about any of the commands given please read the man
pages for that command on the machine on which you wish to use it. Please direct any
further questions towards course personnel.

