Lecture 1:
Why Parallelism?

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

One common definition

A parallel computer is a|collection of processing elements

that cooperate to solve problems|fast

We care about performance * We're going to use multiple
processors to get it

* Note: different motivation from “concurrent programming” using pthreads in 15-213
(CMU 15-418, Spring 2012)

DEMO 1

(15-418 Spring 2012’s first parallel program)

Speedup

One major motivation of using parallel processing: achieve a speedup

For a fixed problem size:

Time (1 processor)
Speedup(P processors) = —
Time (P processors)

(CMU 15-418, Spring 2012)

Class observations from demos 1

m Communication limited the maximum speedup achieved

B Minimizing the cost of communication improved speedup

- Moved students (“processors”) closer together (or let them shout)

(CMU 15-418, Spring 2012)

DEMO 2

(scaling up to four processors)

(CMU 15-418, Spring 2012)

Class observations from demo 2

m |mbalance in work assignment limited speedup

- Some processors ran out work to do (went idle), while others
were still working

® [mproving the distribution of work improved speedup

(CMU 15-418, Spring 2012)

DEMO 3

(massively parallel execution)

(CMU 15-418, Spring 2012)

Class observations from demo 3

B The problem | just gave you has a significant amount of
communication compared to computation

m Communication costs can dominate a parallel
computation, severely limiting speedup

(CMU 15-418, Spring 2012)

Course theme 1:
Designing and writing parallel programs ... that scale!

m Parallel thinking
1. Decomposing work into parallel pieces

2. Assigning work to processors
3. Orchestrating communication/synchronization

m Abstractions for performing the above tasks

- Writing code in popular parallel programming languages

(CMU 15-418, Spring 2012)

Course theme 2:

Parallel computer hardware implementation: how parallel
computers work

m Mechanisms used to implement abstractions efficiently

- Performance characteristics of implementations
- Design trade-offs: performance vs. convenience vs. cost

m Whydo | need to know about HW?

- Because the characteristics of the machine really matter
(recall speed of communication issues in class demos)

- Because you care about performance (you are writing parallel programs)

(CMU 15-418, Spring 2012)

Course theme 3:
Thinking about efficiency

m FAST != EFFICIENT

m Just because your program runs faster on a parallel computer, it
doesn’t mean it is using the hardware efficiently

- |Is 2x speedup on 10 processors is a good result?
B Programmer’s perspective: make use of provided machine capabilities

B HW designer’s perspective: choosing the right capabilities to put in
system (performance/cost, cost = silicon area?, power?, etc.)

(CMU 15-418, Spring 2012)

Logistics

(CMU 15-418, Spring 2012)

Logistics

m Kayvon’s office hours

= Tues/Thurs 1:30-2:30 PM (right after class)
- GHC7005

m TAs
- Michael Papamichael
- Mike Mu

B Textbook

= Culler and Singh, Parallel Computer Architecture: A Hardware/Software Approach

- Yes, it’s old. But many parts are still very good.

(CMU 15-418, Spring 2012)

Logistics: assignments

® Four programming assignments
- First assignment individual, the rest are in pairs

- Eachin a different parallel programming environment

Assignment 1: ISPC programming
on Intel quad-core CPU

T~ ’i; --5??:;,_4%
= Q» S -!
| §:1 I ai n'”le
, . .\ \ /&
Assignment 3: OpenMP Assignment 4: MPI
programming on programming on
Supercomputing cluster Supercomputing cluster

Assignment 2: OpenCL
programming on NVIDIA GPUs

(CMU 15-418, Spring 2012)

Logistics: final project
m 6-week final project

® Donein pairs

B Announcing: the first annual 418 parallelism competition!
- Non-CMU judges from (Intel, NVIDIA, etc.)
- Expect non-trivial prizes... (e.g., high end GPUs, tablets)

(CMU 15-418, Spring 2012)

Logistics: grades

40% assignments

30% exams

25% project

5% class participaction

(CMU 15-418, Spring 2012)

Why parallelism?

(CMU 15-418, Spring 2012)

Why parallelism?

B The answer 10 years ago

- To get performance that was faster

than what clock frequency scaling Intel CPU Trends

would provide 100 000 (sources: Intel, Wikipedia, K. Olukotun)

- Because if you just waited until next
year, your code would run fasteron
the next generation CPU

1,000

m Parallelizing your code not
always worth the time

100

- Do nothing: performance doubling
~ every 18 months

10

@ Transistors (000)

® Clock Speed (MHz)
A Power (W)

@ Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000

(CMU 15-418, Spring 2012)

End of frequency scaling

10,000,000
Dual-Core Itanium 2 o
1,000,000 | -
Intel CPU Trends (
(sources: Intel, Wikipedia, K. Olukotun)
100,000 |
10,000
1,000
100
10
- [
¢
1 ' @ Transistors (000) J—
° ° ® Clock Speed (MHz)
A Power (W)
@ Perf/Clock (ILP)
0

1970 1975 1980 1985 1990 1995 2000 2005 2010

(CMU 15-418, Spring 2012)

Power wall

P=CV2F

P: power

C: capacitance
V:voltage

F: frequency

m Higher frequencies typically require higher voltages

(CMU 15-418, Spring 2012)

Power vs. core voltage

Pentium M

24.5

Power [W]

0.956 1.036 1.164 1.276 1.420 1.484

Core Voltage [V]

Credit: Shimin Chin (CMU 15-418, Spring 2012)

Programmable invisible parallelism

m Bitlevel parallelism
- 16bit — 32bit — 64hit

m [nstruction level parallelism (ILP)

- Two instructions that are independent can be executed simultaneously

- “Superscalar” execution

(CMU 15-418, Spring 2012)

ILP example

ILP =3

ILP =1

ILP =1

a = (X*x + y*y + z*z)

X *X

T

/////

+

T

y*y Z*Z

e

(CMU 15-418, Spring 2012)

ILP scaling

3
2

o

=

S

D

V

o

v
I
0

0 4 8 12 16

Instruction Issue Capability

(CMU 15-418, Spring 2012)

Single core performance scaling

10,000,000

The rate of single thread

performance scaling has decreased 000,000 Dual-Core Itanium 2 it
O

(essentially to 0) Intel/CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

100,000

1. Frequency scaling limited by power

10,000

2. ILP scaling tapped out

1,000

100

No more free lunch for
software developers!

10

@ Transistors (000)
® Clock Speed (MHz)
o0 A Power (W)

@ Perf/Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

(CMU 15-418, Spring 2012)

Why parallelism?

B The answer 10 years ago

- To get performance that was faster than what clock frequency scaling
would provide

- Because if you just waited until next year, your code would run faster on
the next generation CPU

m The answer today:

- Because it is the only way to achieve significantly higher application
performance for the foreseeable future

(CMU 15-418, Spring 2012)

Intel Sandy Bridge (2011)
m Quad core CPU + GPU

I P e e

Pré'céssor;

TuaiaEl

ATl

Sy

mtlud g
.::' Displayis
1"DMland ~
Misc I/O

= & i ’
C . ' ',‘ vl . : K £ . o r - 3 .. i -Tw et = ‘ -
13 > a i ” E - . k. l : 171}
‘ o s Prit - : : ._. ".~'5)-"-. ¥ 1 . 21 f, "“'..‘A .- 3 1 .“)
- 1L 1S A A ST S v : i . v L i1 3 ,
- Ll , ~~. ’ . e " e o L 2 } 2 b - PRRA i 3L Pritehi.N o o L O i ¢
. . ", xa B W AT) A% d - et R L' A4 N LBl g ey ! { !
- - % - O ! BRL It 18 Al , W A VYaR : i Y 2 3
s Ve HE 14 e - W o~ . i a—— 'y 1 Y vr AR . b -
»“ . MR« ‘ . o ' . " 1] : . : X 2 L ‘ . xl : 11 § : ‘ ". 3 '
f Y o R, .. EHISH L 1 S f T ' Hil 1 - N
N p P d o oy ! v | A 1R T : a5 i :
‘.,’.’."‘ A =19 & Iy - . s) 5 ¢ : v e “ 2 . ¢ < : ety
'. . : : 1‘
' T ! {])
X o : :

"'“ﬂwovn'*-
e ron
i

‘“*i R
el

yn4
TR

1A Rk AN AR
donunnbs

S

T TR ————— ——
*"—-‘*Q -~
e L S e P

e Er ETE T “"‘
ibihibih dhdhdhd b dbdh

(CMU 15-418, Spring 2012)

NVIDIA Fermi GPU (2009)

m 16 processing cores IR EE EETE TS

a1+

M

-n"
SRR

ve e L ! > D e 3
i el 1 3
e o] 1 3 ¢

R B T DA B H AN & L FRTTITTTTTRTIVAE BT
b ok

19 B8

IR (g

(CMU 15-418, Spring 2012)

Mobile processing

m Power limits heavily influencing designs

Apple A5: (in iPhone 4s and iPad 2) NVIDIA Tegra:
Dual Core CPU + GPU + image processor and more Quad core C(PU + GPU + image processor...

(CMU 15-418, Spring 2012)

Supercomputing

m Today: clusters of CPUs + GPUs
m Pittsburgh Supercomputing Center: Backlight
m 512 eight core Intel Xeon processors

- 4096 total cores

(CMU 15-418, Spring 2012)

Summary (what we learned)

m Single thread performance scaling has ended

- To run faster, you will need to use multiple processing elements
- Which means you need to know how to write parallel code

m Writing parallel programs can be challenging

- Problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important

(CMU 15-418, Spring 2012)

