Lecture 1:
Why Parallelism?

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)



One common definition

A parallel computer is a|collection of processing elements

that cooperate to solve problems|fast

We care about performance * We're going to use multiple
processors to get it

* Note: different motivation from “concurrent programming” using pthreads in 15-213
(CMU 15-418, Spring 2012)



DEMO 1

(15-418 Spring 2012’s first parallel program)



Speedup

One major motivation of using parallel processing: achieve a speedup

For a fixed problem size:

Time (1 processor)
Speedup(P processors) = —
Time (P processors)
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Class observations from demos 1

m Communication limited the maximum speedup achieved

B Minimizing the cost of communication improved speedup

- Moved students (“processors”) closer together (or let them shout)
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DEMO 2

(scaling up to four processors)

(CMU 15-418, Spring 2012)



Class observations from demo 2

m |mbalance in work assignment limited speedup

- Some processors ran out work to do (went idle), while others
were still working

® [mproving the distribution of work improved speedup
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DEMO 3

(massively parallel execution)
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Class observations from demo 3

B The problem | just gave you has a significant amount of
communication compared to computation

m Communication costs can dominate a parallel
computation, severely limiting speedup
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Course theme 1:
Designing and writing parallel programs ... that scale!

m Parallel thinking
1. Decomposing work into parallel pieces

2. Assigning work to processors
3. Orchestrating communication/synchronization

m Abstractions for performing the above tasks

- Writing code in popular parallel programming languages
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Course theme 2:

Parallel computer hardware implementation: how parallel
computers work

m Mechanisms used to implement abstractions efficiently

- Performance characteristics of implementations
- Design trade-offs: performance vs. convenience vs. cost

m Whydo | need to know about HW?

- Because the characteristics of the machine really matter
(recall speed of communication issues in class demos)

- Because you care about performance (you are writing parallel programs)
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Course theme 3:
Thinking about efficiency

m FAST != EFFICIENT

m Just because your program runs faster on a parallel computer, it
doesn’t mean it is using the hardware efficiently

- |Is 2x speedup on 10 processors is a good result?
B Programmer’s perspective: make use of provided machine capabilities

B HW designer’s perspective: choosing the right capabilities to put in
system (performance/cost, cost = silicon area?, power?, etc.)
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Logistics
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Logistics

m Kayvon’s office hours

= Tues/Thurs 1:30-2:30 PM (right after class)
- GHC7005

m TAs
- Michael Papamichael
- Mike Mu

B Textbook

= Culler and Singh, Parallel Computer Architecture: A Hardware/Software Approach

- Yes, it’s old. But many parts are still very good.
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Logistics: assignments

®  Four programming assignments
- First assignment individual, the rest are in pairs

- Eachin a different parallel programming environment

Assignment 1: ISPC programming
on Intel quad-core CPU
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Assignment 3: OpenMP Assignment 4: MPI
programming on programming on
Supercomputing cluster Supercomputing cluster

Assignment 2: OpenCL
programming on NVIDIA GPUs
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Logistics: final project
m 6-week final project

® Donein pairs

B Announcing: the first annual 418 parallelism competition!
- Non-CMU judges from (Intel, NVIDIA, etc.)
- Expect non-trivial prizes... (e.g., high end GPUs, tablets)
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Logistics: grades

40% assignments

30% exams

25% project

5% class participaction
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Why parallelism?
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Why parallelism?

B The answer 10 years ago

- To get performance that was faster

than what clock frequency scaling Intel CPU Trends

would provide 100 000 (sources: Intel, Wikipedia, K. Olukotun)

- Because if you just waited until next
year, your code would run fasteron
the next generation CPU

1,000

m  Parallelizing your code not
always worth the time

100

- Do nothing: performance doubling
~ every 18 months
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End of frequency scaling
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Power wall

P=CV2F

P: power

C: capacitance
V:voltage

F: frequency

m Higher frequencies typically require higher voltages
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Power vs. core voltage

Pentium M

24.5

Power [W]

0.956 1.036 1.164 1.276 1.420 1.484

Core Voltage [V]

Credit: Shimin Chin (CMU 15-418, Spring 2012)



Programmable invisible parallelism

m Bitlevel parallelism
- 16bit — 32bit — 64hit

m [nstruction level parallelism (ILP)

- Two instructions that are independent can be executed simultaneously

- “Superscalar” execution
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ILP example

ILP =3

ILP =1

ILP =1

a = (X*x + y*y + z*z)

X *X

T

/////

+

T

y*y Z*Z
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ILP scaling
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Single core performance scaling

10,000,000

The rate of single thread

performance scaling has decreased 000,000 Dual-Core Itanium 2 it
O

(essentially to 0) Intel/CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

100,000

1. Frequency scaling limited by power

10,000

2. ILP scaling tapped out

1,000
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No more free lunch for
software developers!
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Why parallelism?

B The answer 10 years ago

- To get performance that was faster than what clock frequency scaling
would provide

- Because if you just waited until next year, your code would run faster on
the next generation CPU

m The answer today:

- Because it is the only way to achieve significantly higher application
performance for the foreseeable future
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Intel Sandy Bridge (2011)
m Quad core CPU + GPU
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NVIDIA Fermi GPU (2009)
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Mobile processing

m Power limits heavily influencing designs

Apple A5: (in iPhone 4s and iPad 2) NVIDIA Tegra:
Dual Core CPU + GPU + image processor and more Quad core C(PU + GPU + image processor...
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Supercomputing

m Today: clusters of CPUs + GPUs
m Pittsburgh Supercomputing Center: Backlight
m 512 eight core Intel Xeon processors

- 4096 total cores
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Summary (what we learned)

m Single thread performance scaling has ended

- To run faster, you will need to use multiple processing elements
- Which means you need to know how to write parallel code

m Writing parallel programs can be challenging

- Problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important
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