
Lecture 4:
Parallel Programming Basics

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

ISPC discussion: sum “reduction”

export*uniform*float*sumall2(
***uniform*int*N,
***uniform*float**x)
{
***uniform*float*sum;
***float*partial*=*0.0f;
***foreach*(i*=*0*...*N)
***{
******partial*+=*x[i];
***}

***//*from*ISPC*math*library
***sum*=*reduceAdd(partial);

***return*sum;
}

export*uniform*float*sumall1(
***uniform*int*N,
***uniform*float**x)
{
***uniform*float*sum*=*0.0f;
***foreach*(i*=*0*...*N)
***{
******sum*+=*x[i];
***}

***return*sum;
}

Compute the sum of all array elements in parallel

sum is of type uniform !oat (one copy of variable for all program instances)
Unde"ned behavior: All program instances accumulate into sum in parallel
(read-modify-write operation must be atomic for correctness: it is not)

 (CMU 15-418, Spring 2012)

ISPC discussion: sum “reduction”
export*uniform*float*sumall2(
***uniform*int*N,
***uniform*float**x)
{
***uniform*float*sum;
***float*partial*=*0.0f;
***foreach*(i*=*0*...*N)
***{
******partial*+=*x[i];
***}

***//*from*ISPC*math*library
***sum*=*reduceAdd(partial);

***return*sum;
}

Compute the sum of all array elements in parallel
Each instance accumulates a private partial sum
(no communication)

Partial sums are added together using the reduceAdd()
cross-instance communication primitive. The result is the
same for all instances (uniform)

ISPC code at right will execute in a manner similar to
handwritten C implementation below.

const*int*N*=*1024;
float**x*=*new*float[N];
__mm256*partial*=*_mm256_broadcast_ss(0.0f);

//*populate*x

for*(int*i=0;*i<N;*i+=8)
***partial*=*_mm256_add_ps(partial,*_mm256_load_ps(&x[i]));

float*sum*=*0.f;
for*(int*i=0;*i<8;*i++)
***sum*+=*partial[i];
}

 (CMU 15-418, Spring 2012)

Parallel programming basics

 (CMU 15-418, Spring 2012)

Creating a parallel program
▪ Thought process:

- Identify work that can be performed in parallel
- Partition work (and associated data)
- Manage data access, communication, and synchronization

▪ Recall one** of our main goals is speedup:
For a "xed problem size:

Speedup(P processors) =
Time (1 processor)

Time (P processors)

** Other goals include e#ciency (cost, area, power, etc.), working on bigger problems than on a uniprocessor

 (CMU 15-418, Spring 2012)

Steps in creating a parallel program
Problem to solve

Subproblems
(“tasks”)

Threads **

Parallel program
(communicating

threads)

Execution on
parallel
machine

Decomposition

Assignment

Orchestration

Mapping

These steps are
performed by the

programmer and/or
system (compiler,

runtime, hardware)

** textbook uses the term
“processes”. We’re referring to
the same concept

 (CMU 15-418, Spring 2012)

Decomposition
▪ Break up problem into tasks that can be carried out in parallel

- Need not happen statically
- Tasks can be identi!ed as program executes

▪ Want to create enough tasks to keep all execution units on a
machine busy.

Key aspect of decomposition: identifying dependencies
(a lack of dependencies)

 (CMU 15-418, Spring 2012)

Limited concurrency: Amdahl’s law
▪ Say you have a sequential program

▪ Let S = the fraction of sequential execution that is inherently
sequential
- Dependencies prevent parallel execution

▪ Then speedup ≤ 1/S

 (CMU 15-418, Spring 2012)

Amdahl’s law example
▪ 2-phase computation on an N-by-N grid

- Phase 1: independent computation on each grid element
- Phase 2: compute sum of all cell values
- Real-life example: image processing

▪ Sequential implementation
- Both phases take N2 time: total is 2N2

N

N

Execution time

Pa
ra

lle
lis

m

N2 N2

1

 (CMU 15-418, Spring 2012)

First attempt at parallelism (P processors)
▪ Strategy:

- Phase 1: execute in parallel
- time for phase 1: N2/P

- Phase 2: execute serially
- time for phase 2: N2

▪ Overall performance:

- Speedup

- Speedup ≤ 2

Execution time

Pa
ra

lle
lis

m

N2/P

N2

1

P

Execution time

Pa
ra

lle
lis

m
N2 N2

1

P Sequential program

Parallel program

 (CMU 15-418, Spring 2012)

Parallelizing phase 2
▪ Strategy:

- Phase 1: execute in parallel
- time for phase 1: N2/P

- Phase 2: execute partial summations in parallel, combine results serially
- time for phase 2: N2/P + P

▪ Overall performance:

- Speedup

Execution time

Pa
ra

lle
lis

m

N2/P

1

P
Parallel program

N2/P + P

Note: speedup → P when N >> P

overhead:
combining the partial sums

 (CMU 15-418, Spring 2012)

Amdahl’s law
▪ Let S = the fraction of sequential execution that is inherently sequential
▪ Max speedup on P processors given by:

speedup

Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1

 (CMU 15-418, Spring 2012)

Decomposition
▪ Who is responsible for performing decomposition?

- In many cases: the programmer

- Lots and lots of research on automatic decomposition of
sequential programs (very hard in general case)
- Compiler analyzes program, determines dependencies

- What if dependencies are data-dependent?
- Success with simple loops, loop nests
- The “magic parallelizing compiler” has never materialized

 (CMU 15-418, Spring 2012)

Assignment
Problem to solve

Subproblems
(“tasks”)

Threads

Parallel program
(communicating

threads)

Execution on
parallel
machine

Decomposition

Assignment

Orchestration

Mapping

 (CMU 15-418, Spring 2012)

Assignment
▪ Assigning tasks to threads

- Think of the threads as “workers”

▪ Goals: balance workload, reduce communication costs

▪ Can be performed statically, or dynamically during execution

▪ While programmer often responsible for decomposition many
languages/runtimes take responsibility for assignment.

 (CMU 15-418, Spring 2012)

Assignment examples in ISPC
export*void*sinx(
***uniform*int*N,
***uniform*int*terms,
***uniform*float**x,
***uniform*float**result)
{
***//*assumes*N*%*programCount*=*0
***for*(uniform*int*i=0;*i<N;*i+=programCount)
***{

****int*idx*=*i*+*programIndex;
****float*value*=*x[idx];
****float*numer*=*x[idx]***x[idx]***x[idx];
****uniform*int*denom*=*6;**//*3!
****uniform*int*sign*=*X1;

****for*(uniform*int*j=1;*j<=terms;*j++)
****{*
*******value*+=*sign***numer*/*denom
*******numer**=*x[idx]***x[idx];
*******denom**=*(j+3)***(j+4);
*******sign**=*X1;

******}
******result[i]*=*value;
***}
}

Decomposition by loop iteration

Programmer managed assignment:
Static assignment
Assign iterations to instances in interleaved fashion

export*void*sinx(
***uniform*int*N,
***uniform*int*terms,
***uniform*float**x,
***uniform*float**result)
{
***foreach*(i*=*0*...*N)
***{

****float*value*=*x[i];
****float*numer*=*x[i]***x[i]***x[i];
****uniform*int*denom*=*6;**//*3!
****uniform*int*sign*=*X1;

****for*(uniform*int*j=1;*j<=terms;*j++)
****{*
*******value*+=*sign***numer*/*denom
*******numer**=*x[i]***x[i];
*******denom**=*(j+3)***(j+4);
*******sign**=*X1;

******}
******result[i]*=*value;
***}
}

Decomposition by loop iteration

Foreach construct exposes independent tasks to system
System-manages assignment of iterations to instances

 (CMU 15-418, Spring 2012)

Orchestration
Problem to solve

Subproblems
(“tasks”)

Threads

Parallel program
(communicating

threads)

Execution on
parallel
machine

Decomposition

Assignment

Orchestration

Mapping

 (CMU 15-418, Spring 2012)

Orchestration
▪ Involves:

- Structuring communication
- Adding synchronization to preserve dependencies
- Organizing data structures in memory, scheduling tasks

▪ Goals: reduce costs of communication/sync, preserve locality
of data reference, reduce overhead, etc.

▪ Machine details impact many of these decisions
- If synchronization is expensive, might use it more sparsely

 (CMU 15-418, Spring 2012)

Mapping
Problem to solve

Subproblems
(“tasks”)

Threads

Parallel program
(communicating

threads)

Execution on
parallel
machine

Decomposition

Assignment

Orchestration

Mapping

 (CMU 15-418, Spring 2012)

Mapping
▪ Mapping “threads” to execution units
▪ Usually a job for the OS
▪ Many mapping decisions are trivial in parallel programs

- Parallel application uses the entire machine
- So oversubscribing machine with multiple parallel apps is not common

▪ More interesting mapping decisions:
- Place related threads (cooperating threads) on the same processor

(maximize locality, data sharing, minimize costs of comm/sync)
- Mapping of ISPC instances to vector ALUs

 (CMU 15-418, Spring 2012)

Decomposing/assigning computation or data?

Often, the reason a problem requires lots of computation (and needs to be parallelized) is
that it involves a lot of data.

I’ve described the process of parallelizing programs as an act of partitioning computation

Often equally valid to think of partitioning data. (computations go with the data)

But there are many computations where the correspondence between “tasks” and data is
less clear. In these cases it’s natural to think of partitioning computation.

N

N

 (CMU 15-418, Spring 2012)

A parallel programming example

 (CMU 15-418, Spring 2012)

Grid-based solver
▪ Solve partial di%erential equation on N+2 x N+2 grid
▪ Iterative solution

- Perform Gauss-Seidel sweeps over grid until convergence

N

N

A[i,j]*=*0.2***A[i,j]*+*A[i,jX1]*+*A[iX1,j]

**********************+*A[i,j+1]*+*A[i+1,j];*

 (CMU 15-418, Spring 2012)

Grid solver algorithm
(generic syntax: to match textbook)

 (CMU 15-418, Spring 2012)

Step 1: identify dependencies
(problem decomposition phase)

N

N
......

Each row element depends on element to left.

Each column depends on previous column.

 (CMU 15-418, Spring 2012)

Step 1: identify dependencies
(problem decomposition phase)

N

N
......

Parallelism along the diagonals.

Good: parallelism exists!

Possible strategy:
1. Partition grid cells on a diagonal into tasks
2. Update values in parallel
3. When complete, move to next diagonal

Bad: hard to exploit
Early in computation: not much parallelism
Frequent synchronization (each diagonal)

 (CMU 15-418, Spring 2012)

Key idea: change algorithm
▪ Change order grid cell cells are updated

▪ Iterates to (approximately) same solution, but converges to
solution di%erently
- Note: #oating point values computed are di$erent, but solution still converges

to within error threshold

▪ Domain knowledge: needed knowledge of Gauss-Seidel
iteration to realize this change is okay for application’s needs

 (CMU 15-418, Spring 2012)

Exploit application knowledge
Reorder grid traversal: red-black coloring

N

N

Update all red cells in parallel

When done, update all black cells in
parallel
(dependency on red cells)

Repeat until convergence

 (CMU 15-418, Spring 2012)

Assignment

Which is better? Does it matter?

 (CMU 15-418, Spring 2012)

Consider dependencies (data !ow)
1. Perform red update in parallel
2. Wait until all processors done
3. Communicate updated red cells to other processors
4. Perform black update in parallel
5. Wait until all processors done
6. Communicate updated black cells to other processors
7. Repeat

Wait

Wait

Compute red

Compute black

 (CMU 15-418, Spring 2012)

Assignment

= data that must be sent to P2 each iteration
Blocked assignment requires less data to be communicated between processors

 (CMU 15-418, Spring 2012)

Grid solver: data-parallel expression
To simplify code: we’ve dropped red-black separation, now ignoring dependencies (follows textbook section 2.3)

decomposition:
tasks are individual
elements

assignment:
speci"ed explicitly
(block assignment)

Orchestration:
handled by system
(End of for_all block is implicit wait for all
workers before returning to sequential control)

 (CMU 15-418, Spring 2012)

Shared address space solver
SPMD execution model

Wait

Compute

Wait

Compute

▪ Programmer responsible for synchronization

▪ Common synchronization primitives:

- Locks (mutual exclusion): only one thread in
the critical region at a time

- Barriers: wait for threads to reach this point

 (CMU 15-418, Spring 2012)

Barrier
▪ Barrier(nthreads)*

▪ Barriers are a conservative way to express
dependencies

▪ Barriers divide computation into phases
▪ All computations by all threads before the barrier

complete before any computation in any thread
after the barrier begins

Barrier

Compute

Barrier

Compute

 (CMU 15-418, Spring 2012)

Shared address space solver (SPMD execution model)

Value of pid is di%erent for each
SPMD instance: use value to
compute region of grid to work on

partial sum

Why are there so many barriers?

 (CMU 15-418, Spring 2012)

Need for mutual exclusion
▪ Each thread executes

- load the value of di$ into register r1
- add the register r2 to register r1
- store the value of register r1 into di$

▪ One possible interleaving: (let starting value of di$=0, r2=1)

r1*←*diff

r1*←*r1*+*r2

diff*←r1

r1*←*diff

r1*←*r1*+*r2

diff*←r1

T0 T1

T0*reads*value*0
T1*reads*value*0
T0*sets*value*of*its*r1*to*1
T1*sets*value*of*its*r1*to*1
T0*stores*1*to*diff
T0*stores*1*to*diff

▪ Need set of three instructions to be atomic

 (CMU 15-418, Spring 2012)

Mechanisms for atomicity
▪ lock/unlock mutex variable around critical section

LOCK(mylock);

//*critical*section

UNLOCK(mylock);

▪ Intrinsics for hardware-supported atomic rd-modify-write operations

▪ Some languages have !rst-class support
atomic*{

//*critical*section

}

atomicAdd(x,*10);

▪ Access to critical section will be serialized across all threads
- High contention will cause performance problems (recall Amdahl’s Law)
- Note partial accumulation into private mydiff

 (CMU 15-418, Spring 2012)

More on specifying dependencies
▪ Barriers: simple, but conservative (coarse granularity)

- Everything done up until now must !nish, then before next phase

▪ Specifying speci!c dependencies can increase performance
(by revealing more parallelism)
- Example: two threads. One produces a result, the other consumes it.

//*produce*x,*then*let*T1*know

X*=*1;

flag*=*1;
while*(flag*==*0);

print*X;

T0 T1

▪ We just implemented a message queue

T0 T1

 (CMU 15-418, Spring 2012)

Next time: message passing version

 (CMU 15-418, Spring 2012)

Example application 1:
Modeling ocean currents

▪ Discretize ocean into slices represented as 2D grids
- Toy example today (grid solver) was taken from this case study

▪ Discretize time evolution: ∆t

▪ High accuracy simulation = small ∆t and high resolution grids

 (CMU 15-418, Spring 2012)

Example application 2:
Galaxy evolution

▪ Represent galaxy as a bunch of particles (think: particle = star)

▪ Compute forces due to gravity
- Gravity has in"nite extent: O(N2)
- But falls o% with distance, so algorithm groups far away stars into aggregates

▪ N-body simulation: commonly used way to simulate #uids, molecular dynamics

 (CMU 15-418, Spring 2012)

Example application 3:
Ray tracing

▪ Simulate propagation of light through scene to synthesize realistic images

▪ Compute amount of light traveling along rays

Camera

Screen

Image Credit: Sony
(Cloudy With a Chance of Meatballs)

Image credit: NVIDIA
(this image can be rendered at “interactive rates” but not real-time yet)

 (CMU 15-418, Spring 2012)

Summary
▪ Amdahl’s Law

- Overall speedup limited by amount of serial execution in code

▪ Steps in creating a parallel program
- Decomposition, assignment, orchestrating, mapping
- We’ll talk a lot about making good decisions in each of these phases in coming

lectures (in practice, very inter-related)

▪ Focus today: identifying dependencies
▪ Focus soon: identifying locality

