15-418/618

RECITATION I, JANUARY 26, 2017, SPRING 2018

RECITATION MATERIALS

• /afs/cs.cmu.edu/academic/class/15418-s18/public/recw2

/PROC/CPUINFO

- model name
- cpu Mhz speed now (Speed step)
- cache size outermost (L3)
- siblings number of hyperthreads
- processor id of a hyperthread
- cpu cores
- core id
- physical id socket
- flags note avx, avx2, sse, etc.

WHAT ELSE (QUICK AND DIRTY) TO LOOK UP?

- Memory bandwidth 76.8 GB/s
- Power consumption I40W
- Intel codename: Broadwell (Shrink of Haswell)
- Functional units
 - Latency, issue time, capcacity

DEVIL IN THE DETAILS

- http://www.agner.org/optimize/microarchitecture.pdf
- CS:APP Textbook chapter 5

FUNCTIONAL UNITS

- 0. int arithmetic, fp multiply, int and fp division, branches
- I. int arithmetic, fp addition, int multiplication, fp multiplication
- 2. load, address computation
- 3. load, address computation
- 4. store
- 5. integer arithmetic
- 6. integer arithmetic, branches
- 7. store address computation

Observations:

- 4x independent int operations (add, bitwise ops, etc)
- Takes 2 functional units to store (compute address and store)

LATENCY, ISSUE TIME, CAPACITY

	Integer			Floating-Point		
Operation	Latency	Issue	Capcacity	Latency	Issue	Capacity
Addition	1	I	4	3	1	1
Multiplication	3	1	1	5	1	2
Division	3-30	3-30	1	3-15	3-15	I

Latency: Clock cycles required to perform the operation

Issue time: Minimum number of lock cycles between issuing independent operations

Capacity: How many can be issued simultaneously

Pipelining enables the short issue times (Multiple instances in various states of execution concurrently)

TAYLOR SERIES APPROXIMATION OF SIN(X)

What's the inner-work loop? How many times is it executed? What are the pain point(s)?

TAYLOR SERIES APPROXIMATION OF SIN(X)

```
// Original version of sin function
void sinx_reference(int N, int terms, float * x, float *result)
   for (int i=0; i< N; i++) {
     float value = x[i];
     float numer = x[i]*x[i]*x[i];
     int denom = 6; // 3!
     int sign = -1;
```

What's the inner-work loop?

How many times is it executed? N*terms What are the pain point(s)? Multiplication is expensive. So is division!

```
for (int j=1; j<=terms; j++) {
  value += sign * numer / denom;
  numer *= x[i] * x[i];
  denom *= (2*j+2) * (2*j+3);
  sign *= -1;
result[i] = value;
```

BENCHMARKING

- Time = 1062.54ms. -- Total execution time
- N = 10000 total number of elements
- T = I5 Number of terms/element
- r = 1000 -- repetitions
- t = I number of threads
- 7.084 ns/element time per element

SIMPLE IMPROVEMENTS

```
void sinx_better(int N, int terms, float * x, float *result)
{
    // Make some simple fixes that you think might help
    for (int i=0; i<N; i++) {
        float value = x[i];
        float x2 = value * value;
        float numer = x2 * value;
        int denom = 6; // 3!
        int sign = -1;</pre>
```

```
for (int j=1; j<=terms; j++) {
     value += sign * numer / denom;
     numer *= x2;
     denom *= (2*j+2) * (2*j+3);
     sign = -sign;
     }
     result[i] = value;
   }
}</pre>
```

6.16 ns/element – time per element

LET'S FOCUS ON THIS

```
for (int i=0; i<N; i++) {
    ...
    for (int j=1; j<=terms; j++) {
        value += sign * numer / denom;
        numer *= x2;
        denom *= (2*j+2) * (2*j+3);
        sign = -sign;
    }
    result[i] = value;
}
...
}</pre>
```

- Division is very costly
- Computation is independent of i

PRECOMPUTE RECIPROCAL FACTORIALS

```
void sinx predenoms(int N, int terms,
                                                 for (int i=0; i<N; i++) {
float * x, float *result)
                                                       float value = x[i];
                                                       float x2 = value * value;
                                                       float numer = x2 * value;
  float rdenom[MAXTERMS];
  int denom = 6:
                                                       for (int j=1; j \le terms; j++) {
  float sign = -1;
                                                         value += numer * rdenom[j];
  for (int j = I; j \le terms; j++) {
                                                         numer *= x2;
     rdenom[j] = sign/denom;
     denom *= (2*j+2) * (2*j+3);
                                                       result[i] = value;
     sign = -sign;
```

1.2ns/element, 3.6 cycles – nice!

INNER WORK LOOP -- ASM

```
.L38:

vfmadd231ss (%rax), %xmm0, %xmm1 value += numer * redenom[j];
addq $4, %rax
vmulss %xmm2, %xmm0, %xmm0
cmpq %r8, %rax
jne .L38

loop:
value += numer * redenom[j];
numer *= x2;
test = i != N;
if (test) goto loop;
```

Vfmadd – fused multiply and add

3 cycle latency of multiplication is limiting

LOOP UNROLLING

- Reduce the number of "tests" and increase the amount of work done
- Avoid branch penalities from jumping
- Improve the potential for ILP by removing tests and jumps and leaving parallelism
- If taken to extremes...
 - Binary size can be a factor (Especially for IoT applications, etc)
 - Instruction caches can be swamped
 - More temporary variables versus registers (less of a current concern)

LOOP UNROLLING

```
.L49:
                                                  loop:
    vmovaps %xmm1, %xmm3
                                                   t = numer * rdenom[j+1];
    vmulss 4(%rax), %xmm2, %xmm1
                                                   i+=2;
    addq $8, %rax
                                                   value += numer * rdenom[j-2];
    vfmadd231ss -8(%rax), %xmm0, %xmm3
                                                   value += numer * t;
    cmpq %r10, %rax
                                                   test = j==terms-I;
    vfmadd I 32ss %xmm0, %xmm3, %xmm I
                                                   numer *= x4;
    vmulss %xmm4, %xmm0, %xmm0
                                                   if (test) goto loop;
          .L49
    ine
```

Critical path has two fp ops ==> 6 clock cycles for 2 elements.

Should be the same as regular code, but one less multiply might be helping it run faster.

REASSOCIATION (ASSUME FP IS DISTRIBUTIVE AND ASSOCIATIVE)

```
.L64:
    vmovss 4(%rax), %xmm3
    addq $8, %rax
    vfmadd213ss -8(%rax), %xmm2,
%xmm3
    cmpq %r10, %rax
    vfmadd231ss %xmm0, %xmm3,
%xmm1
    vmulss %xmm4, %xmm0, %xmm0
         .L64
    ine
```

```
loop:
    v = rdenom[j+1];
    j+= 2;
    t = rdenom[j-2] + x2 * v;
    test = j != terms;
    value += numer * t;
    numer *= x4;
    if (test) goto loop;
```

Updating of value and numer both induce delay of 3 cycles, but compute 2 elements in that time. CPE=1.5

LIMITS OF UNROLLING (CONSIDER AN UNROLLING FACTOR OF K)

- As keep unrolling more, would be limited by addition to update value.
 ~3.0/k.
- Limited by pair of FMA units once k exceeds 6. E.g., for k = 6
 - would have 7 operations, requiring 3.5 cycles to compute 6 elements = 3.5/6.
 - In general would have k+1 operations performed by two
- functional units to produce k values. CPE = (k+1)/12.
- We'd also be limited by the overhead of setting up the loop, things not dividing evenly into iterations, etc.

LIMITS OF UNROLLING

2x: 0.70 ns/element

3x: 0.50

4x: 0.76

5x: 0.48

16 terms:

2x: 0.676

3x: 0.610

4x: 0.498 (16 evenly divides 4)

5x: 0.575

ISPC VECTORIZATION OF UNROLLED CODE

```
for (j=1; j<=terms-2; j+=3) {
 uniform float rdenom[MAXTERMS];
                                                      value +=
 uniform int denom = 6;
                                                         numer * (rdenom[j] +
 uniform float sign = -1;
                                                               x2 * rdenom[j+1] +
 . . .
                                                               x4 * rdenom[j+2]);
                                                       numer *= x6;
foreach (i=0 ... N) {
     float value = x[i];
     float x2 = value * value;
                                                    for (; j <= terms; j++) {
     float x4 = x2 * x2;
                                                      value += numer * rdenom[j];
     float x6 = x2 * x4;
                                                       numer *= x2;
     float numer = x2 * value;
                                                    result[i] = value;
     uniform int j;
```

ISPC PERFORMANCE

- The ISPC code ran in 0.63ns/element, versus 7.16 for the unvectorized code, a speedup of 9.83x.
- A speedup of more than 8x seems surprising
- But, demon and sign are uniform, so only computed once.

WHAT'S THE SCORE?

- Vectorizing was easy: 5.40x speedup
- Conventional optimization was painful: I5x improvement
- Total improvement: 82x