15-418/618

RECITATION I, JANUARY 26,2017, SPRING 2018

RECITATION MATERIALS

* /afs/cs.cmu.edu/academic/class/|15418-s|8/public/recw?2

/[PROC/CPUINFO

* model name

e cpu Mhz — speed now (Speed step)
* cache size — outermost (L3)

* siblings — number of hyperthreads
¢ processor — id of a hyperthread

° Cpu cores

* core id

* physical id — socket

* flags — note avx, avx2, sse, etc.

WHAT ELSE (QUICK AND DIRTY) TO LOOK UP?

Memory bandwidth — 76.8 GB/s

Power consumption — 140W

Intel codename: Broadwell (Shrink of Haswell)

Functional units

* Latency, issue time, capcacity

DEVIL IN THE DETAILS

* http://www.agner.org/optimize/microarchitecture.pdf

* CS:APP Textbook chapter 5

http://www.agner.org/optimize/microarchitecture.pdf

FUNCTIONAL UNITS

0. int arithmetic, fp multiply, int and fp division, branches

| int arithmetic, fp addition, int multiplication, fp multiplication

2. load, address computation
3. load, address computation
4. store

5.integer arithmetic

6. integer arithmetic, branches

/.store address computation

Observations:
* 4x independent int operations (add,
bitwise ops, etc)

* Takes 2 functional units to store
(compute address and store)

LATENCY, ISSUE TIME, CAPACITY

Operation Latency Issue Capcacity Latency Issue Capacity
Addition I I 4 3 I I
Multiplication 3 I I 5 I 2
Division 3-30 3-30 I 3-15 3-15 I

Latency: Clock cycles required to perform the operation
Issue time: Minimum number of lock cycles between issuing independent operations
Capacity: How many can be issued simultaneously

Pipelining enables the short issue times
(Multiple instances in various states of execution concurrently)

TAYLOR SERIES APPROXIMATION OF SIN(X)

/I Original version of sin function for (intj=1;j<=terms; j++) {
void sinx_reference(int N, int terms, float * x, float *result) value += sign * numer / denom;
{ numer *= x[i] * x[i];
for (int i=0;i<N; i++) { denom *= (2%+2) * (27%+3);
float value = x[il; sign *= -1
float numer = x[i*x[iJ*x[il; }
int denom = 6;// 3!
int sign = -I; result[i] = value;
}
}

What'’s the inner-work loop? How many times is it executed? What are the pain point(s)?

TAYLOR SERIES APPROXIMATION OF SIN(X)

/I Original version of sin function for (int j=1; j<=terms; j++) {

void sinx_reference(int N, int terms, float * x, float *result) value += sign * numer / denom;

{ numer *= x[i] * x[i];

for (int i=0;i<N; i++) { denom *= (2%j+2) * (2%j+3);
float value = x[i]; sign *= -1;
float numer = x[i*x[iJ*x[il; }
int denom = 6;// 3!
int sign = -1; result[i] = value;
}
What’s the inner-work loop? }

How many times is it executed? N*terms
What are the pain point(s)? Multiplication is expensive. So is division!

BENCHMARKING

Time = 1062.54ms. -- Total execution time

N = 10000 — total number of elements

T = |5 — Number of terms/element

r = 1000 -- repetitions

t = | — number of threads

7.084 ns/element — time per element

SIMPLE IMPROVEMENTS

void sinx_better(int N, int terms, float * x, float *result)
{
I/l Make some simple fixes that you think might help
for (int i=0;i<N;i++) {
float value = x[i];
float x2 = value * value;
float numer = x2 * value;
int denom = 6;// 3!
int sign = -1;

6.16 ns/element — time per element

}

for (int j=1;j<=terms; j++) {

}

value += sign * numer / denom;
numer *= x2;
denom *= (2*%j+2) * (2%j+3);
sign = -sign;

}

result[i] = value;

LET’S FOCUS ON THIS

for (int i=0;i<N; i++) {

for (int j=1;j<=terms;j++) {
value += sign * numer / denom;
numer *= x2;
denom *= (2%j+2) * (2*j+3);
sign = -sign;
}

result[i] = value;

Division is very costly
Computation is independent of i

PRECOMPUTE RECIPROCAL FACTORIALS

void sinx_predenoms(int N, int terms, for (int i=0;i<N;i++) {
float * x, float *result) float value = x[i];
{ float x2 = value * value;
float rdenom[MAXTERMS]; float numer = x2 * value;
int denom = 6; for (int j=1; j<=terms;j++) {
float sign = -1; value += numer * rdenom[j];
for (int j = |;j <= terms; j++) { numer *= x2;
rdenom[j] = sign/denom; }
denom *= (2%j+2) * (2%j+3); result[i] = value;
sign = -sign; }

} }

| .2ns/element, 3.6 cycles — nice!

INNER WORK LOOP -- ASM

.L38:

vfmadd23lss (%rax), %xmm0, %exmm |

addq $4, %rax

vmulss %xmm?2, %xmm0, %xmmQ0

cmpq %rr8, %rax
jne .L38

Vfmadd — fused multiply and add

loop:

value += numer * redenom([j];
jt+,

numer *= x2;

test =i!=N;

if (test) goto loop;

3 cycle latency of multiplication is limiting

LOOP UNROLLING

* Reduce the number of “tests’ and increase the amount of work done

* Avoid branch penalities from jumping

* Improve the potential for ILP by removing tests and jumps and leaving

parallelism

* If taken to extremes...
* Binary size can be a factor (Especially for loT applications, etc)

* Instruction caches can be swamped

* More temporary variables versus registers (less of a current concern)

LOOP UNROLLING

.L49: loop:
vmovaps %xmm |, %xmm3 t = numer * rdenom[j+1];
vmulss 4(%rax), %xmm?2, %exmm | j+=2;
addq $8, %rax value += numer * rdenom[j-2];
vfmadd23lss -8(%rax), %exmm0, %xmm3 value += numer * t;
cmpq %rl0, %rax test = j==terms-|;
vfmadd|132ss %xmm0, %exmm3, %xmm | numer *= x4;:
vmulss %xmm4, %xmm0, %sxmm0 if (test) goto loop;
jne .L49

Critical path has two fp ops ==> 6 clock cycles for 2 elements.
Should be the same as regular code, but one less multiply might be helping it run faster.

REASSOCIATION
(ASSUME FP IS DISTRIBUTIVE AND ASSOCIATIVE)

L64: looDp:
vmovss 4(%rax), %xmm3 P.v = rdenom(j+ 1]
addq $8, %rax =9 i
vfmadd213ss -8(%rax), %exmm?2, L _ rd’enom[j-Z] + %) * v
Zoxmm3]] test = j != terms;
cmpq %rl0, %rax value += numer * t;
vfmadd231ss 7%xmm0, %xmm3, numer *= x4- ’
Axmmrln Iss %exmm4, %xmm0, %exmm0 1 {test) goto loop:
vmu oX y /oX y /0X
. Updating of value and numer both induce delay of
jne .L64 P 5 4

3 cycles, but compute 2 elements in that time.
CPE=1.5

LIMITS OF UNROLLING
(CONSIDER AN UNROLLING FACTOR OF K)

* As keep unrolling more, would be limited by addition to update value.
~3.0/k.
* Limited by pair of FMA units once k exceeds 6. E.g.,for k =6
* would have 7 operations, requiring 3.5 cycles to compute 6 elements

= 3.5/6.
* In general would have k+| operations performed by two
: functional units to produce k values. CPE = (k+1)/12.

* We'd also be limited by the overhead of setting up the loop, things not
dividing evenly into iterations, etc.

LIMITS OF UNROLLING

2x: 0.70 ns/element |6 terms:
3x:0.50

4x:0.76 2x:0.676
5x:0.48 3x:0.610

4x:0.498 (16 evenly divides 4)
5x:0.575

ISPCVECTORIZATION OF UNROLLED CODE

uniform float rdenom[MAXTERMS]; for (j=1; j<=terms-2;j+=3) {
uniform int denom = 6; value +=
uniform float sign = -1; numer * (rdenom(j] +

x2 * rdenom[j+1] +
x4 * rdenom[j+2]);

foreach (i=0 ... N) { numer *= x6;
float value = x[iJ;)
float x2 = value * value;
float x4 = x2 * x2;
float x6 = x2 * x4;
float numer = x2 * value;)

for (;j <= terms;j++) {
value += numer * rdenom([j];
numer *= x2;

result[i] = value;

ISPC PERFORMANCE

* The ISPC code ran in 0.63ns/element, versus 7.16 for the unvectorized code, a speedup
of 9.83x.

* A speedup of more than 8x seems surprising

* But, demon and sign are uniform, so only computed once.

WHAT’'S THE SCORE?

* Vectorizing was easy: 5.40x speedup

* Conventional optimization was painful: | 5x improvement

* Total improvement: 82x

