Lecture 2:
Pipelining and
Instruction-Level
Parallelism

15-418 Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2019

Many kinds of processors

CPU GPU FPGA Etc.

Why so many?¢ What differentiates these processors®

CMU 15-418/15-618, Spring 2019

Why so many kinds of processors?

Each processor is designed for different kinds of programs

’
9/
Oy b

= CPUs

" “Sequential” code —i.e., single / few threads

= GPUs

" Programs with lots of independent work = “Embarrassingly parallel”

" Many others: Deep neural networks, Digital signal processing, Etc.

CMU 15-418/15-618, Spring 2019

Parallelism pervades architecture

= Speeding up programs is all about parallelism
= 1) Find independent work

= 2) Execute it in parallel
= 3) Profit

= Key questions:
" Where is the parallelism?

" Whose job is it to find parallelism?

Where is the parallelism@

Different processors take radically different approaches

= CPUs: Instruction-level parallelism
= Implicit

® Fine-grain

" GPUs: Thread- & data-level parallelism
= Explicit

= Coarse-grain

Whose job to find parallelism?

Different processors take radically different approaches

" CPUs: Hardware dynamically schedules instructions
* Expensive, complex hardware =» Few cores (tens)
= (Relatively) Easy to write fast software

= GPUs: Software makes parallelism explicit

» Simple, cheap hardware = Many cores (thousands)
= (Often) Hard to write fast software

Visualizing these differences

y I
3 .
k .
} = 3

= Pentium 4

“Northwood” (2002)

1 s s
-256-kByte—|) |- 256 kByte -
L2 Cache | - |jgwimeit! == S L2 Cache
_Block | H fomnmasmes == | | Block |

z z

el inlalsleisls WWW’&;WDBWWW& m}g_gmwb&i?'gg{uu

Visualizing these differences

" Pentium 4

“Northwood” (2002)

= Highlighted areas
actually execute
instructions

=>» Most area spent
on scheduling

(not on executing the
program)

Visualizing these differences

= AMD Fiji (2015)

Visualizing these differences

= AMD Fiji (2015)

= Highlighted areas
actually execute
instructions

=> Most area
spent executing
the program

= (Rest is mostly
/O & memory,
not scheduling)

Today you will learn...

How CPUs exploit ILP to speed up straight-line code

= Key ideas:

" Pipelining & Superscalar: Work on multiple instructions at once

= Qut-of-order execution: Dynamically schedule instructions
whenever they are “ready”

= Speculation: Guess what the program will do next to discover
more independent work, “rolling back” incorrect guesses

= CPUs must do all of this while preserving the illusion that
instructions execute in-order, one-at-a-time

In

other words... Today is about

Buckle up!

...But please ask questionsl!

Example:
Polynomial evaluation

int poly(int *coef,
int terms, int x) {
int power = 1;
int value = 0;
for (int j = 0; j < terms; j++) {
value += coef[j] * power;
power *= X;
}

return value;

Example:
Polynomial evaluation
= Compiling on ARM poly:
cmp
ble
int poly(int *coef, push
: : mov
int terms, int x) { 2 dd
int power = 1; Mmovs
int value = 0; LQOVS
for (int j = 0; j < terms; j++) { " 1dr
value += coef[j] * power; cmp
. mla
power *= X; U
¥ bne
return value; pop
bx
} .L4:
movs

CMU 15-418/15-618, Spring 2019 bx

rO: value
rl: &coef[terms]
r2: X
r3: &coef[0]
r4: power
r5: coef[j]
rl, #0

.L4

{r4, r5}

r3, roO

rl, rO, rl, 1s1 #2
r4, #1

ro, #0

r5, [r3], #4
rl, r3

ro, r4, r5, roO
rd, r2, r4

.L3

{r4, r5}

Tr

ro, #0

Tr

rO: value
rl: &coef[terms]
Example: 21 x
. . r3: &coef[0]
Polynomial evaluation r4: power
r5: coef[j]
= Compiling on ARM poly: P
cmp rl, #0 -g
ble .L4 o
int poly(int *coef, push {r4, r5} 5
: . mov r3, ro
_ UGS IS UIE 2 add rl, rO, rl, 1s1 #2
int power = 1; movs r4, #1
int value = 0; Lgovs r0, "0
for (int j = 0; J < terms; j++) { ' 1&r r5, [r3], #4 c
value += coef[j] * power; cmp rl, r3 %
ower ¥ x: mla ro, r4, r5, r0 5
g - mu’l r4, r2, r4 =
} bne .L3

CMU 15-418/15-618, Spring 201

Example:
Polynomial evaluation

ro:
rl:
re:
r3:
r4:
r5:

value
&coef[terms]
X

&coef[j]
power
coef[j]

= Compiling on ARM

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= X;

| ::

.L3:
1dr r5, [r3], #4 // r5 <- coef[j]; j++
cmp rl, r3 // compare: J < terms?
mla ro, r4, r5, rO // value += r5 * power
mul rd, r2, r4 // power *= X
bne L3 // repeat?

CMU 15-418/15-618, Spring 2019

(two operations)

(mul + add)

Example:
Polynomial evaluation

= Executing poly(A, 3, x)

cmp rl, #0

ble .L4

push {r4, r5}

mov r3, ro0

add rl, rO, rl, 1sl #2
movs r4, #1

movs ro, #0

Tdr r5, [r3], #4
cmp rl, r3

mla rO, r4, r5, r0
mul r4, r2, r4

bne .L3

Example:
Polynomial evaluation

= Executing poly(A, 3, x)

rl, #0 -
.L4 £
{r4, r5} }j
r3, roO

rl, rO, rl, 1sl #2
r4, #1

ro, #0

r5, [r3], #4 S
rl, r3 =
rO, r4, r5, r0 @
rd, r2, r4 o
L3 -

CMU 15-418/15-618, Spring 2019

Example:
Polynomial evaluation

= Executing poly(A, 3, x)

cmp
ble
push
mov
add
movs
movs
Tdr
cmp
mla

ril,
.L4

{r4,
r3,
rl,
r4,
ro,
rs5,
rl,
ro,
r4,
.L3

#0 2

5

r5% E
ro mla
ro, rl, 1sl #2 mul
#1 bne
#0 Tdr
[r3], #4 cmp
r3 mla
r4, r5, roO mul
r2, r4 bne
pop
bx

CMU 15-418/15-618, Spring 2019

r5,
rl,
ro,
r4,
.L3
rs5,
rl,
ro,
r4,
.L3
{ra,

[r3], #4
r3

r4, rS5,
r2, r4

[r3], #4
r3

r4, r5,
r2, r4

r5}

ro

ro

1 iteration

2 iteration J

J

Fini

Example:
Polynomial evaluation

= Executing poly(A, 3, x)

cmp
ble
push
mov
add
movs
movs
Tdr
cmp
mla
mul
bne

rl, #0 - |
L4 E mmp Tdr
{r4, r5} E cmp
r3, ro0 mla
rl, rO, rl, 1sl #2 mul
r4, #1 bne
ro, #0 Tdr
r5, [r3], #4 cmp
rl, r3 mla
rO, r4, r5, rO mul
r4, r2, r4 bne
L3 pop
bx

CMU 15-418/15-618, Spring 2019

r5,
rl,
ro,
r4,
.L3
rs5,
rl,
ro,
r4,
.L3
{ra,

[r3], #4
r3

r4, rS5,
r2, r4

[r3], #4
r3

r4, r5,
r2, r4

r5}

ro

ro

1 iteration

2 iteration J

J

Fini

The software-hardware boundary

" The instruction set architecture (ISA) is a functional
contract between hardware and software

" [t says what each instruction does, but not how

=" Example: Ordered sequence of x86 instructions

= A processor’s microarchitecture is how the ISA is
implemented

Arch : tArch :: Interface : Implementation

Simple CPU model

= Execute instructions in program order

= Divide instruction execution into stages, e.g.:
= 1. Fetch — get the next instruction from memory
= 2. Decode — figure out what to do & read inputs
= 3. Execute — perform the necessary operations

» 4, Commit — write the results back to registers / memory

" (Real processors have many more stages)

Evaluating polynomial on the
simple CPU model

) 1dr r5, [r3]1, #4

cmp rl, r3

mla rO, r4, r5, r0 CPU

mu r4, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, roO CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne L3 1. Read “Idr r5, [r3] #4”

from memory

CMU 15-418/15-618, Spring 2019

Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, roO CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
1dr r5, [r3], #4 ldr

cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne L3 2. Decode “Idr r5, [r3] #4”

and read input regs

CMU 15-418/15-618, Spring 2019

Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, roO CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
1dr r5, [r3], #4 1dr

cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne L3 3. Load memory at r3 and

compute r3 + 4

CMU 15-418/15-618, Spring 2019

Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, roO CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4 1dr
cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne .L3

4. Write values
into regs r5 and r3

CMU 15-418/15-618, Spring 2019

Evaluating polynomial on the
simple CPU model

T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, r0 CPU

mu r4, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

Evaluating polynomial on the
simple CPU model

T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, r0 CPU

mu r4, r2, r4

bne .L3 Decode Execute Commit
Tdr r5, [r3], #4 cmp

cmp rl, r3

mla rO, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

Evaluating polynomial on the
simple CPU model

T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, r0 CPU

mu r4, r2, r4

bne .L3 Decode Execute Commit
Tdr r5, [r3], #4 cmp

cmp rl, r3

mla rO, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

Evaluating polynomial on the
simple CPU model

T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, r0 CPU

mu r4, r2, r4

bne .L3 Decode Execute Commit
Tdr r5, [r3], #4 cmp
cmp rl, r3

mla rO, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

Evaluating polynomial on the
simple CPU model

T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, r0 CPU

mu r4, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

Evaluating polynomial on the
simple CPU model

How fast is this processor?

1 ns Latency? Throughput?
——

Fetch | 1dr cmp mla
Decode 1dr cmp mla
Execute Tdr cmp
Commit ldr cmp

\ I\ I
Y Y
Latency = 4 ns / instr Throughput = 1 instr / 4 ns

CMU 15-418/15-618, Spring 2019

Simple CPU is very wasteful

1 ns
T

CMU 15-418/15-618, Spring 2019

Pipelining

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

Tdr r5, [r3], #4

cmp rl, r3 & Y
mla ro, r4, r5, roO

mu 1 r4, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 ldr

cmp rl, r3

mla ro, r4, r5, roO

mu r4d, r2, r4 Q "4

bne .L3

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

1dr r5, [r3], #4

cmp rl, r3 & D
mla ro, r4, r5, roO

mu 1 r4, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 cmp ldr

cmp rl, r3

mla ro, r4, r5, roO

mu r4d, r2, r4 Q "4

bne .L3

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

1dr r5, [r3], #4

cmp rl, r3 & D
mla ro, r4, r5, roO

mu 1 r4, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 mla cmp ldr

cmp rl, r3

mla ro, r4, r5, roO

mu r4d, r2, r4 Q "4

bne .L3

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

Tdr r5, [r3], #4

cmp rl, r3 - D
mla rO0, r4, r5, roO

mu r4, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 mu mla cmp Tdr
cmp rl, r3

mla ro, r4, r5, roO

mu 1 r4, r2, r4) "4

bne .L3

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

1dr r5, [r3], #4

cmp rl, r3 & D
mla ro, r4, r5, roO

mu 1 r4, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 bne mu mla cmp
cmp rl, r3

mla ro, r4, r5, roO

mu r4d, r2, r4 Q "4

bne .L3

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

Tdr r5, [r3], #4

cmp rl, r3 - D
mla rO0, r4, r5, roO

mu rd, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 ldr bne mu mla
cmp rl, r3

mla ro, r4, r5, rO

mu r4d, r2, r4 Q "4

bne .L3

Evaluating polynomial on the

pipelined CPU

1 ns

How fast is this processor?

Latency? Throughput?

—
Fetch | ldr|cmp |mla |mul |bne | ldr|cmp|mla|mul |bne
Decode Idr|{cmp {mla|mul |bne | ldr|cmp |mla|mul
Execute Tdr|cmp|mla|mul |bne| 1dr|cmp|mla
Commit Tdr |cmp |mla |mul | bne | 1dr | cmp

Latency = 4 ns / instr
CMU 15-418/15-618, Spring 2019

Throughput = 1 instr / ns

4X speedup!

Speedup achieved through
pipeline parallelism

) TivE 2

Processor works on 4

instructions at a time

Fetch | ldr|cmp |mla |mul |bne | 1dr]) cmp imla|mul | bne
Decode Idr|{cmp [mla|mul | bne| 1dr flcmp |mla|mul
Execute Tdr|{cmp|mla|mul| bne||1dr | cmp|mla
Commit Tdr | cmp |mTal mul |fbne | 1dr | cmp

CMU 15-418/15-618, Spring 2019

Limitations of pipelining

= Parallelism requires independent work

" QQ: Are instructions independent?

= A: No! Many possible hazards limit parallelism...

Data hazards

1dr ra,
cmp rc,

rd

[rb]l, #4 // ra & Memory[rb]; rb €« rb + 4
// rc € rd + re

Q: When can the CPU pipeline the cmp behind 1dr?

Fetch | ldr | cmp
Decode Idr | cmp
Execute Tdr | cmp
Commit Tdr | cmp

CMU 15-418/15-618, Spring 2019

= A: When they use

different registers
= Specifically, when
cmp does not read

any data written
by 1dr

= E.g., rb != rd

Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

‘ T1dr r5,<[r3], #4

cmp ri, r3

mla ro, r4, r5, roO CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

T1dr r5,<[r3], #4

cmp rl, r3

mla ro, r4, r5, roO CPU

mul r4, r2, r4

bne .L3 Decode Execute
1dr r5, [r3], #4 ldr

cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

1dr

r5 ,([r3] , #4

rl, r3

ro,
r4,
.L3

r5,
rl,
ro,
r4,
.L3

r4, r5,
r2, r4

r3
rd4, r5,
r2, r4

ro

CPU
Decode Execute
[r3], #4 cmp 1dr
ro

CMU 15-418/15-618, Spring 2019

Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

T1dr r5,<[r3], #4
cmp ri, r3
‘ mla rO, r4, r5, roO CPU
mul r4, r2, r4
bne .L3 Decode Execute Commit
ldr r5, [r3], #4 cmp O 1dr
cmp rl, r3
mla rO, r4, r5, roO
mul r4, r2, r4

bne .L3 Inject a “bubble’” (NOP)
into the pipeline

CMU 15-418/15-618, Spring 2019

Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

T1dr r5,<[r3], #4

cmp ri, r3

mla ro, r4, r5, roO CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
1dr r5, [r3], #4 mla cmp O
cmp rl, r3

mla rO, r4, r5, roO

mul r4, r2, r4

bne .L3 cmp proceeds once 1dr
has committed

CMU 15-418/15-618, Spring 2019

Stalling degrades performance

Processor works on 3
instructions at a time

Fetch | ldr Idr|{cmp |mla | mul
Decode bne | Idr | cmp [mla
Execute mla|mul | bne | 1dr
Commit cmp |mla | mul | bne

= But stalling is sometimes unavoidable

= E.g., long-latency instructions (divide, cache miss)

CMU 15-418/15-618, Spring 2019

Dealing with data hazards:
Forwarding data

" Wait a second... data is available after Execute!

CPU

Decode Execute Commi'r
r3
1dr

" Forwarding eliminates many (not all) pipeline stalls

CMU 15-418/15-618, Spring 2019

Pipelining is not free!

" Q: How well does forwarding scale?

= A: Not well... many forwarding paths in deep &
complex pipelines

a

Execute Execute Commit

Fetch Decode

>
2
D

N S

Control hazards + Speculation

" Programs must appear to execute in program order
=>» All instructions depend on earlier ones

= Most instructions implicitly continue at the next...

= But branches redirect execution to new location

Dealing with control hazards:
Flushing the pipeline

" What if we always fetch the next instruction?

Tdr r5, [r3], #4
cmp rl, r3

mla ro, r4, r5, roO
mul r4d, r2, r4

- bne .L3

]

Static instruction sequence
(i.e., program layout in memory)

CPU
Decode Execute
mul mla

CMU 15-418/15-618, Spring 2019

Dealing with control hazards:
Flushing the pipeline

" What if we always fetch the next instruction?

Tdr r5, [r3], #4
cmp rl, r3

mla rO r4, r5, r0
mu r2, r4

bne

"_

CPU
Decode Execute
bne mu

CMU 15-418/15-618, Spring 2019

Static instruction sequence
(i.e., program layout in memory)

Dealing with control hazards:
Flushing the pipeline

" What if we always fetch the next instruction?

Tdr r5, [r3], #4
cmp rl, r3

mla rO r4, r5, r0
mu r2, r4

bne

->_

CPU
Decode Execute Commit
pop bne mu |

(i.e., program layout in memory) Whoops! We fetched the

Static instruction sequence

wrong instructions!
(Loop not finished)

CMU 15-418/15-618, Spring 2019

Dealing with control hazards:
Flushing the pipeline

KNe)d \oopP
seration)

x " What if we always fetch the next instruction?

‘1dr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, roO
mul r4d, r2, r4

bne .L3

—

Static instruction sequence
(i.e., program layout in memory)

CPU
Decode Execute Commit
® e

Whoops! We fetched the
wrong instructions!
(Loop not finished)

CMU 15-418/15-618, Spring 2019

Pipeline flushes destroy
performance

) TivE 2

Processor works on 2 or 3

instructions at a time

Fetch | Idr|cmp |mla|mul |bne
Decode ldr |cmp |mla |mul
Execute 1dr | cmp [mla
Commit Idr | cmp

" Penalty increases with deeper pipelines

CMU 15-418/15-618, Spring 2019

Dealing with control hazards:
Speculation!

® Processors do not wait for branches to execute

" [nstead, they speculate (i.e., guess) where to go next
+ start fetching

" Modern processors use very sophisticated
mechanisms

= E.g., speculate in Fetch stage—before processor even
knows instrn is a branch!

" >05% prediction accuracy
= Still, branch mis-speculation is major problem

Pipelining Summary

= Pipelining is a simple, effective way to improve
throughput
= N-stage pipeline gives up to N X speedup

" Pipelining has limits
" Hard to keep pipeline busy because of hazards
" Forwarding is expensive in deep pipelines
" Pipeline flushes are expensive in deep pipelines

=» Pipelining is ubiquitous, but tops out at N = 15

Out-of-Order Execution

Increasing parallelism via
dataflow

" Parallelism limited by many false dependencies,
particularly sequential program order

= Dataflow tracks how instructions actually depend on
each other

" True dependence: read-after-write

Dataflow increases parallelism by eliminating
unnecessary dependences

Example: Dataflow in polynomial

evaluation

Tdr r5,,0[r3], #4
cmp r1§<£§~’

mla ro, r&,»r5, roO
mul r4, r2, r4

bne .L3

T1dr r5, [r3], #4
cmp rl, r3

mla ro, r4, r5, roO
mu 1 r4, r2, r4

bne L3

s

Loop iteration

_

Example: Dataflo @

evaluation

Tdr r5,/71r3], #4
cmp ré//;B

mla rd, r4, r5,
mul /rl, r2, r4
bne /.L3

T1dr r5, [r3], #4
cmp rl, r3

mla ro, r4, r5,
mu 1 r4, r2, r4
bne .L3

ro

ro

T1dr

O
X
S

=
—_ <
Q

=
—
Q

Loop iteration

Example: Dataflow polynomial
execution

= Execution only, with perfect scheduling & unlimited
execution units
= 1dr, mul execute in 2 cycles
= cmp, bne execute in 1 cycle

= mla executes in 3 cycles
" Q: Does dataflow speedup execution? By how much?

" Q: What is the performance bottleneck?

—

VO 00 N 060 0 M WO N

1dr

T1dr
cmp
mla
mu 1
bne

CMU 15-418/15-618, Spring 2019

rs5,
rl,
ro,
r4,
L3

[r3], #4
r3

r4d, r5,
r2, r4

ro

—

VO 00 N 060 0 M WO N

1dr

cmp

T1dr
cmp
mla
mu 1
bne

CMU 15-418/15-618, Spring 2019

r5, Ar3], #4
rl, r3

ro, r4, r5,
rd, r2, r4
L3

ro

—

VO 00 N 060 0 M WO N

1dr

cmp

mla

T1dr
cmp
mla
mu 1
bne

CMU 15-418/15-618, Spring 2019

r5, [r3], #4
rl1,\r3

ro, r&s»r5,
rd, r2, r4
L3

ro

—

VO 00 N 060 0 M WO N

1dr

cmp

mla

T1dr
cmp
mla
mu 1
bne

CMU 15-418/15-618, Spring 2019

rs5,
rl,
ro,
r4,
L3

mu 1

[r3], #4
r3

r4d, r5,
r2, r4

ro

—

VO 00 N 060 0 M WO N

1dr

cmp

bne

(

mla

T1dr
cmp
mla
mu 1
bne

CMU 15-418/15-618, Spring 2019

rs5,
rl,
ro,
r4,
L3

mu 1

[r3], #4
r3

r4d, r5,
r2, r4

ro

—

VO 00 N 060 0 M WO N

1dr

Tdr

cmp
\

cmp

T1dr
cmp
mla
mul
bne
T1dr
cmp
mla
mul
bne

bne mla

bne ’
mla

r5,_ [r3], #4

rl4 r3

r®, rd4, r5, roO

rd, r2, r4

L3

r5.-[r3], #4

rl, rs

ro, r4, r5, roO

rd, r2, r4

L3

CMU 15-418/15-618, Spring 2019

mu 1

mul

—

VO 00 N 060 0 M WO N

bne

bne

mla

mu 1

<

mul

b

<+

mla

mu |

mla

CMU 15-418/15-618, Spring 2019

—

VO 00 N 060 0 M WO N

1dr mu |
y cmp — y
1dr mu |
\\\\‘ bne mla
—]
1dr =l ; mu
bne
Tife) | 1
1dr Lemp i nul
bina
-
dr | L mu
_bne mla
1d P 1
r - mu
bne
1; \\§§<\cmp mla *
r T~ | mu’l
. bne | .
1:w \§§§> cmp B - m*1

Example: Dataflow polynomial
execution

" Q: Does dataflow speedup execution? By how much?

" Yes! 3 cycles / loop iteration

" |nstructions per cycle (IPC) = 5/3 = 1.67
(vs. 1 for perfect pipelining)

" Q: What is the performance bottleneck?
= mla: Each mTa depends on previous mla & takes 3 cycles

* =» This program is latency-bound

Out-of-order (OoQ) execution uses
dataflow to increase parallelism

" |dea: Execute programs in dataflow order, but give
the illusion of sequential execution

= This is a “restricted dataflow” model
" Restricted to instructions near those currently committing

" (Pure dataflow processors also exist that expose
dataflow to software)

High-level OoQO microarchitecture

CPU

Instruction a4 Buffer

Decode Commit

Execute

| | |
In-order Out-of-order In-order

CMU 15-418/15-618, Spring 2019

Oo00 is hidden behind
in-order frontend & commit

CPU

Instruction Buffer

Decode Commit
Execute

" Instructions only enter & leave instruction buffer in
program order; all bets are off in between!

CMU 15-418/15-618, Spring 2019

Example: OoO polynomial
evaluation

" Q: Does Oo0O speedup execution? By how much?
" Q: What is the performance bottleneck?

= Assume perfect forwarding & branch prediction

Example: OoO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch &
Decode

1dr

Execute Tdr

Commit Tdr

CMU 15-418/15-618, Spring 2019

Example: OoO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch &
1dr | cmp
Decode
Execute 1dr cmp
Commit 1dr | cmp

CMU 15-418/15-618, Spring 2019

Example: OoO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch &
Decode

1dr | cmp | mla

Execute Tdr cmp mla

Commit 1dr | cmp mla

CMU 15-418/15-618, Spring 2019

Example: OoO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch &
Decode

1dr | cmp | mla | mul

Execute 1dr cmp mla muT

Commit 1dr | cmp mla mu’l

CMU 15-418/15-618, Spring 2019

Example: OoO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch &
Decode

1dr | cmp | mla | mul | bne

Execute 1dr cmp mla mul bne

Commit 1dr | cmp mla mul | bne

CMU 15-418/15-618, Spring 2019

Example: OoO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch

S 1dr | cmp | mla | mul | bne | 1dr | cmp | mla | mul | bne | 1dr | cmp | mla | mul | bne | 1dr
Decode

Execute Tdr cmp mla mu’ bne 1dr cmp mla
Commit 1dr | cmp mla mul | bne 1dr | cmp

Example: OoO polynomial
evaluation pipeline diagram

) TIvE 2

Fetch

S Idr | cmp | mla | mul | bne | 1dr | cmp | mla | mul | bne | 1dr | cmp [mla | mul | bne | Tdr
Decode

Execute Tdr cmp mla mu’ bne 1dr cmp mla
Commit 1dr | cmp mla mul | bne 1dr | cmp

" Wait a minute... this isn’'t Oo0O... or even faster
than a simple pipeline!

" Q: What went wrong?

= A: We're throughput-limited: can only issue 1 instrn

High-level Superscalar OoO
microarchitecture

" Must increase pipeline width to increase ILP > 1

CPU
Instruction Ao Buffer

D
Execute Execute Execute

D

\

] |\ J
| f |
In-order Out-of-order In-order

CMU 15-418/15-618, Spring 2019

Example: Superscalar OoO
polynomial evaluation

) TivE 2

Cerch & ldr Tdr r5, [r3], #4
Decode cmp rl, r3
cmp mla rO, r4, r5, rO
mul r4d, r2, r4
bne .L3
Tdr r5, [r3], #4
Execute cmp rl, r3
mla rO, r4, r5, rO
mul r4d, r2, r4
bne .L3
Commit

CMU 15-418/15-618, Spring 2019

Example: Superscalar OoO
polynomial evaluation

) TivE 2

Forch & 1dr | mla | bne | cmp | mul -Idl" |"5, [I"B], #4
Decode cmp rl, r3
cmp [mul | 1dr | mla | bne mla I"O, rd4, r5, ro
mul r4d, r2, r4
bne L3
1dr r5, [r3], #4
Execute crp rl, r3
mla rO, r4, r5, rO
mul r4d, r2, r4
bne L3
Commit

CMU 15-418/15-618, Spring 2019

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr | mla | bne | cmp | mul
Fetch &
Decode
cmp | mul | Tdr | mla | bne
1dr
Execute
Commit

CMU 15-418/15-618, Spring 2019

Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

rS,e[r3], #4
r lj%\r
<::r0, rd, 5, roO

rd, r2, r4

.L3

r5, [r3], #4
rl, r3

ro, r4, r5, r0
rd, r2, r4

.L3

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr | mla | bne | cmp | mul
Fetch &
Decode

cmp | mul | Tdr | mla | bne

1dr
Execute
mu’l

Commit

CMU 15-418/15-618, Spring 2019

Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

rS,e[r3], #4
r lj%\r
<::r0, rd, 5, roO

rd, r2, r4

.L3

r5, [r3], #4
rl, r3

ro, r4, r5, r0
rd, r2, r4

.L3

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr | mla | bne | cmp | mul
Fetch &
Decode
cmp | mul | Tdr | mla | bne
T
Tdr cmp
Bt
Execute mla
mu’l
Commit

CMU 15-418/15-618, Spring 2019

Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

rS,e[r3], #4
r lj%\r
<::r0, rd, 5, roO

rd, r2, r4

.L3

r5, [r3], #4
rl, r3

ro, r4, r5, r0
rd, r2, r4

.L3

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr [mla | bne | cmp | mul
fetch & 1dr r5,e[r3], #4
Decode cmp FH=r

cmp [mul | 1dr | mla | bne mla r, r4, 5, ro

mul rd, r2, r4
Tdr ’zp’”b‘ne bne [/*.L3
\ Tdr r5.-[r3], #4
Execute mla cmp rL,ors
mla rO, r4, r5, r0
mul r4d, r2, r4
mul Tdr bne |_3

Commit

CMU 15-418/15-618, Spring 2019

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr [mla | bne | cmp | mul
fetch & 1dr r5,e[r3], #4
Decode cmp FH=r

cmp [mul | 1dr | mla | bne mla r, r4, 5, ro

P gy mu 'l rd, r2, r4
1dr cmp | bne mul bne [. I—%
\ ! Tdr r5.-[r3], #4
Execute nla mla cmp rl) rs
/ | mla rO, r4, r5, r0
| A mul rd4d, r2, r4
mu’l Tdr cmp | bne bne] |_3

Commit

CMU 15-418/15-618, Spring 2019

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr [mla | bne | cmp | mul
S 1dr r5,e[r3], #4
Decode cmp rinp=r
cmp [mul | 1dr | mla | bne mla r, r4, 5, ro
1 mul rd, r2, r4
-~ ~)
1dr cmp | bne mul bne . I—%
\ ! Tdr r5.-[r3], #4
v acut / : cmp rl, r>
Xecute nla mla
/ | mla rO, r4, r5, r0
| A mul rd4d, r2, r4
mul Tdr cmp | bne bne] |_3
T1dr | cmp mla | bne [cmp | mla | bne
Commit
mul | 1dr mul

CMU 15-418/15-618, Spring 2019

Example: Superscalar OoO
polynomial evaluation

) TivE 2

Observe:

" Front-end &
commit in-order
(i.e., left-to-right)

= Execute
out-of-order

1dr [mla | bne | cmp | mul
Fetch& [y I\ _IA_ N P
Decode v M N

cmp | mul | Tdr | mla | bne

1d e m‘t\\\
Execute m \ \>1a
mu kh' ’gmﬁ)<hQS‘,1
1dr | cmp mla | bne [cmp | mla

Commit VA

mu'l

1dr

\\/QY

mul

bne

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr [mla | bne | cmp | mul | 1dr | mla [bne | cmp | mul | 1dr | mla | bne | cmp | mul | 1dr
Fetch &
Decode

cmp [mul | 1dr | mla [bne | cmp | mul | 1dr | mla | bne | cmp | mul | 1dr | mla | bne [cmp

1dr cmp | bne mul 1dr cmp | bne mu’l 1dr cmp

Execute mla mla mla mla mla

mul Tdr cmp | bne mul Tdr cmp | bne mul
T1dr | cmp mla | bne ycmp [mla | bne,l cmp | mla b} cmp | mla
Commit "4
mul | 1dr mu % / 1dr mu'l
¢ I

One loop iteration / 3 cycles!

Structural hazards: Other
throughput limitations

= Execution units are specialized
" Floating-point (add /multiply)
" Integer (add/multiply /compare)
" Memory (load /store)

" Processor designers must choose which execution
units to include and how many

® Structural hazard: Data is ready, but instr’'n cannot
issue because no hardware is available

Example: Structural hazards can
severely limit performance

Idr | mla | bne | cmp | mul | 1dr | mla | bne | cmp | mul | 1dr | mla | bne | cmp | mul | 1dr
Fetch &
Decode
cmp [mul | 1dr | mla [bne | cmp | mul | 1dr | mla | bne | cmp | mul | 1dr | mla | bne [cmp
AT Tdr 1dr 1dr Tdr 1dr Tdr
Execute
Int
cmp | bne | cmp | bne cmp | bne | cmp | bne cmp | bne | cmp
Execute
It
M mla mu’l mla mul mla mul
Execute
1dr | cmp | mla mul | 1dr mla mul | 1dr mla
Commit
bne*ém\ /me -

One loop iteration / 5 cycles ®

Superscalar scheduling is complex
& hard to scale

" Q: When is it safe to issue two instructions?e

= A: When they are independent

" Must compare all pairs of input and output registers

= Scalability: O(W#) comparisons where W is issue
width

Oo00 x86: Microcoding

" Each x86 instruction describes several operations

=" E.g., add [esp+4], 5 means:
1. Load Mem[esp+4]
2. Add 5 to it

3. Store result to Mem[esp+4]

® This is too much for (fast) hardware

" Instead, hardware decodes instr'ns into micro-ops
=>» Rest of pipeline uses micro-ops

...But wait, there’s morel

= Many issues we could not touch on

" How to eliminate false dependences

» E.g., write-after-read / write-after-write

" How to track dependences through memory
" E.g., store2load forwarding

=" How to rollback mis-speculations

Recall from last time:
ILP tapped out... why?

10,000,000
Dual-Core Itanium 2 & /
1,000,000
o =)
Intel CPU Trends 4
{sources: Intel, Wikipedia, K. Olukotun) -
100,000
10,000
1,000
100
10
1 f B =Transistor density
.:,. ° ® = Clock frequency
2N A =Power
@ =Instruction-level parallelism (ILP)

0

Processor clock rate stops
increasing

No further benefit from ILP

1970 1975 1980 1985 1990 1995 2000 2005 2010

CMU 15-418/15-618, Spring 2019

Limitations of ILP

= |[LP works great! ...But is complex + hard to scale
= 4-wide superscalar X 20-stage pipeline = 80 instrns in flight

" High-performance OoO buffers hundreds of instructions

= Pipelines can only go so deep
= Branch misprediction penalty grows
" Frequency (GHz) limited by power

" Programs have limited ILP
" Even with perfect scheduling, >8-wide issue doesn’t help

" Dynamic scheduling overheads are significant

= Qut-of-order scheduling is expensive

Limitations of ILP = Multicore

= [LP works great! ...But is complex + hard to scale

®" From hardware perspective, multicore is much more
efficient, but...

" Parallel software is hard!
" Industry resisted multicore for as long as possible

* When multicore finally happened, CPU uarch simplified
=>» more cores

" Many program(mer)s still struggle to use multicore
effectively

