
Lecture 2:

Pipelining and
Instruction-Level

Parallelism
15-418 Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2019

CMU 15-418/15-618, Spring 2019

Many kinds of processors

CMU 15-418/15-618, Spring 2019

Why so many? What differentiates these processors?

CPU GPU FPGA Etc.

Why so many kinds of processors?

Each processor is designed for different kinds of programs

▪ CPUs

▪ “Sequential” code – i.e., single / few threads

▪ GPUs

▪ Programs with lots of independent work “Embarrassingly parallel”

▪ Many others: Deep neural networks, Digital signal processing, Etc.

CMU 15-418/15-618, Spring 2019

Parallelism pervades architecture

▪ Speeding up programs is all about parallelism

▪ 1) Find independent work

▪ 2) Execute it in parallel

▪ 3) Profit

▪ Key questions:

▪ Where is the parallelism?

▪ Whose job is it to find parallelism?

CMU 15-418/15-618, Spring 2019

Where is the parallelism?

Different processors take radically different approaches

▪ CPUs: Instruction-level parallelism

▪ Implicit

▪ Fine-grain

▪ GPUs: Thread- & data-level parallelism

▪ Explicit

▪ Coarse-grain

CMU 15-418/15-618, Spring 2019

Whose job to find parallelism?

Different processors take radically different approaches

▪ CPUs: Hardware dynamically schedules instructions

▪ Expensive, complex hardware Few cores (tens)

▪ (Relatively) Easy to write fast software

▪ GPUs: Software makes parallelism explicit

▪ Simple, cheap hardware Many cores (thousands)

▪ (Often) Hard to write fast software

CMU 15-418/15-618, Spring 2019

Visualizing these differences

▪ Pentium 4
“Northwood” (2002)

CMU 15-418/15-618, Spring 2019

Visualizing these differences

▪ Pentium 4
“Northwood” (2002)

▪ Highlighted areas
actually execute
instructions

 Most area spent
on scheduling
(not on executing the
program)

CMU 15-418/15-618, Spring 2019

Visualizing these differences

▪ AMD Fiji (2015)

CMU 15-418/15-618, Spring 2019

Visualizing these differences

▪ AMD Fiji (2015)

▪ Highlighted areas
actually execute
instructions

 Most area
spent executing
the program

▪ (Rest is mostly
I/O & memory,
not scheduling)

CMU 15-418/15-618, Spring 2019

Today you will learn…

How CPUs exploit ILP to speed up straight-line code

▪ Key ideas:

▪ Pipelining & Superscalar: Work on multiple instructions at once

▪ Out-of-order execution: Dynamically schedule instructions
whenever they are “ready”

▪ Speculation: Guess what the program will do next to discover
more independent work, “rolling back” incorrect guesses

▪ CPUs must do all of this while preserving the illusion that
instructions execute in-order, one-at-a-time

CMU 15-418/15-618, Spring 2019

In other words… Today is about:

CMU 15-418/15-618, Spring 2019

Buckle up!

…But please ask questions!

CMU 15-418/15-618, Spring 2019

Example:
Polynomial evaluation

int poly(int *coef,

int terms, int x) {

int power = 1;

int value = 0;

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

return value;

}

CMU 15-418/15-618, Spring 2019

Example:
Polynomial evaluation

▪ Compiling on ARM

int poly(int *coef,

int terms, int x) {

int power = 1;

int value = 0;

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

return value;

}

CMU 15-418/15-618, Spring 2019

poly:

cmp r1, #0

ble .L4

push {r4, r5}

mov r3, r0

add r1, r0, r1, lsl #2

movs r4, #1

movs r0, #0

.L3:

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

pop {r4, r5}

bx lr

.L4:

movs r0, #0

bx lr

r0: value

r1: &coef[terms]

r2: x

r3: &coef[0]

r4: power

r5: coef[j]

Example:
Polynomial evaluation

▪ Compiling on ARM

int poly(int *coef,

int terms, int x) {

int power = 1;

int value = 0;

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

return value;

}

CMU 15-418/15-618, Spring 2019

poly:

cmp r1, #0

ble .L4

push {r4, r5}

mov r3, r0

add r1, r0, r1, lsl #2

movs r4, #1

movs r0, #0

.L3:

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

pop {r4, r5}

bx lr

.L4:

movs r0, #0

bx lr

r0: value

r1: &coef[terms]

r2: x

r3: &coef[0]

r4: power

r5: coef[j]

P
re

a
m

b
le

It
e
ra

ti
o
n

Fi
n
i

Example:
Polynomial evaluation

▪ Compiling on ARM

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

CMU 15-418/15-618, Spring 2019

.L3:

ldr r5, [r3], #4 // r5 <- coef[j]; j++ (two operations)

cmp r1, r3 // compare: j < terms?

mla r0, r4, r5, r0 // value += r5 * power (mul + add)

mul r4, r2, r4 // power *= x

bne .L3 // repeat?

r0: value

r1: &coef[terms]

r2: x

r3: &coef[j]

r4: power

r5: coef[j]

Example:
Polynomial evaluation

▪ Executing poly(A, 3, x)

CMU 15-418/15-618, Spring 2019

cmp r1, #0

ble .L4

push {r4, r5}

mov r3, r0

add r1, r0, r1, lsl #2

movs r4, #1

movs r0, #0

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

Example:
Polynomial evaluation

▪ Executing poly(A, 3, x)

CMU 15-418/15-618, Spring 2019

cmp r1, #0

ble .L4

push {r4, r5}

mov r3, r0

add r1, r0, r1, lsl #2

movs r4, #1

movs r0, #0

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

J=
0
 i
te

ra
ti
o
n

P
re

a
m

b
le

Example:
Polynomial evaluation

▪ Executing poly(A, 3, x)

CMU 15-418/15-618, Spring 2019

cmp r1, #0

ble .L4

push {r4, r5}

mov r3, r0

add r1, r0, r1, lsl #2

movs r4, #1

movs r0, #0

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

...

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

pop {r4, r5}

bx lr

J=
0
 i
te

ra
ti
o
n

P
re

a
m

b
le

J=
1

 i
te

ra
ti
o
n

J=
2

 i
te

ra
ti
o
n

Fi
n
i

Example:
Polynomial evaluation

▪ Executing poly(A, 3, x)

CMU 15-418/15-618, Spring 2019

cmp r1, #0

ble .L4

push {r4, r5}

mov r3, r0

add r1, r0, r1, lsl #2

movs r4, #1

movs r0, #0

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

...

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

pop {r4, r5}

bx lr

J=
0
 i
te

ra
ti
o
n

J=
1

 i
te

ra
ti
o
n

J=
2

 i
te

ra
ti
o
n

P
re

a
m

b
le

Fi
n
i

The software-hardware boundary

▪ The instruction set architecture (ISA) is a functional
contract between hardware and software

▪ It says what each instruction does, but not how

▪ Example: Ordered sequence of x86 instructions

▪ A processor’s microarchitecture is how the ISA is
implemented

Arch : 𝜇Arch :: Interface : Implementation

CMU 15-418/15-618, Spring 2019

Simple CPU model

▪ Execute instructions in program order

▪ Divide instruction execution into stages, e.g.:

▪ 1. Fetch – get the next instruction from memory

▪ 2. Decode – figure out what to do & read inputs

▪ 3. Execute – perform the necessary operations

▪ 4. Commit – write the results back to registers / memory

▪ (Real processors have many more stages)

CMU 15-418/15-618, Spring 2019

Evaluating polynomial on the
simple CPU model

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

Evaluating polynomial on the
simple CPU model

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

ldr

1. Read “ldr r5, [r3] #4”

from memory

Evaluating polynomial on the
simple CPU model

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

ldr

2. Decode “ldr r5, [r3] #4”

and read input regs

Evaluating polynomial on the
simple CPU model

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

ldr

3. Load memory at r3 and

compute r3 + 4

Evaluating polynomial on the
simple CPU model

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

ldr

4. Write values

into regs r5 and r3

Evaluating polynomial on the
simple CPU model

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

cmp

Evaluating polynomial on the
simple CPU model

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

cmp

Evaluating polynomial on the
simple CPU model

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

cmp

Evaluating polynomial on the
simple CPU model

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

cmp

Evaluating polynomial on the
simple CPU model

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

mla

Evaluating polynomial on the
simple CPU model

CMU 15-418/15-618, Spring 2019

Fetch ldr cmp mla

Decode ldr cmp mla

Execute ldr cmp

Commit ldr cmp

…

Latency = 4 ns / instr

TIME

How fast is this processor?

Latency? Throughput?1 ns

Throughput = 1 instr / 4 ns

Simple CPU is very wasteful

CMU 15-418/15-618, Spring 2019

Fetch ldr cmp mla

Decode ldr cmp mla

Execute ldr cmp

Commit ldr cmp

…

TIME
1 ns

Idle

Hardware

Pipelining

CMU 15-418/15-618, Spring 2019

Pipelining keeps CPU busy through
instruction-level parallelism

▪ Idea: Start on the next instr’n immediately

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

ldr

Pipelining keeps CPU busy through
instruction-level parallelism

▪ Idea: Start on the next instr’n immediately

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

cmp ldr

Pipelining keeps CPU busy through
instruction-level parallelism

▪ Idea: Start on the next instr’n immediately

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

mla cmp ldr

Pipelining keeps CPU busy through
instruction-level parallelism

▪ Idea: Start on the next instr’n immediately

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

mul mla cmp ldr

Pipelining keeps CPU busy through
instruction-level parallelism

▪ Idea: Start on the next instr’n immediately

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

bne mul mla cmp

Pipelining keeps CPU busy through
instruction-level parallelism

▪ Idea: Start on the next instr’n immediately

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

ldr bne mul mla

Evaluating polynomial on the
pipelined CPU

CMU 15-418/15-618, Spring 2019

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

Latency = 4 ns / instr

TIME

How fast is this processor?

Latency? Throughput?1 ns

Throughput = 1 instr / ns

4X speedup!

Speedup achieved through
pipeline parallelism

CMU 15-418/15-618, Spring 2019

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

TIME

Processor works on 4

instructions at a time

Limitations of pipelining

▪ Parallelism requires independent work

▪Q: Are instructions independent?

▪ A: No! Many possible hazards limit parallelism…

CMU 15-418/15-618, Spring 2019

Data hazards

ldr ra, [rb], #4 // ra Memory[rb]; rb rb + 4

cmp rc, rd // rc rd + re

Q: When can the CPU pipeline the cmp behind ldr?

CMU 15-418/15-618, Spring 2019

Fetch ldr cmp … … … …

Decode ldr cmp … … …

Execute ldr cmp … …

Commit ldr cmp …

▪ A: When they use
different registers

▪ Specifically, when
cmp does not read
any data written
by ldr

▪ E.g., rb != rd

Dealing with data hazards:
Stalling the pipeline

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

ldr

▪ Cannot pipeline cmp (ldr writes r3)

▪ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

cmp ldr

??

▪ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

mla cmp ldr

▪ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

mla cmp ldr

Inject a “bubble” (NOP)

into the pipeline

▪ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

CPU

Fetch Decode Execute Commit

mla cmpmul

cmp proceeds once ldr

has committed

Stalling degrades performance

▪ But stalling is sometimes unavoidable

▪ E.g., long-latency instructions (divide, cache miss)

CMU 15-418/15-618, Spring 2019

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr

Commit ldr cmp mla mul bne ldr

…

TIME

Processor works on 3

instructions at a time

Dealing with data hazards:
Forwarding data

▪Wait a second… data is available after Execute!

▪ Forwarding eliminates many (not all) pipeline stalls

CMU 15-418/15-618, Spring 2019

CPU

Fetch Decode Execute Commit

mla cmp ldrmul

r3+4r3

r1

Pipelining is not free!

▪Q: How well does forwarding scale?

▪ A: Not well… many forwarding paths in deep &
complex pipelines

CMU 15-418/15-618, Spring 2019

CPU

Fetch Decode Execute Commit

Mem

Execute

Control hazards + Speculation

▪ Programs must appear to execute in program order
 All instructions depend on earlier ones

▪Most instructions implicitly continue at the next…

▪ But branches redirect execution to new location

CMU 15-418/15-618, Spring 2019

Dealing with control hazards:
Flushing the pipeline

▪What if we always fetch the next instruction?

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

pop {r4, r5}

bx lr

CPU

Fetch Decode Execute Commit

bne mul mla cmp

Static instruction sequence

(i.e., program layout in memory)

Dealing with control hazards:
Flushing the pipeline

▪What if we always fetch the next instruction?

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

pop {r4, r5}

bx lr

CPU

Fetch Decode Execute Commit

pop bne mul mla

Static instruction sequence

(i.e., program layout in memory)

Dealing with control hazards:
Flushing the pipeline

▪What if we always fetch the next instruction?

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

pop {r4, r5}

bx lr

CPU

Fetch Decode Execute Commit

bx pop bne mul

Static instruction sequence

(i.e., program layout in memory) Whoops! We fetched the

wrong instructions!

(Loop not finished)

Dealing with control hazards:
Flushing the pipeline

▪What if we always fetch the next instruction?

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

pop {r4, r5}

bx lr

CPU

Fetch Decode Execute Commit

ldr bne

Static instruction sequence

(i.e., program layout in memory) Whoops! We fetched the

wrong instructions!

(Loop not finished)

Pipeline flushes destroy
performance

▪ Penalty increases with deeper pipelines

CMU 15-418/15-618, Spring 2019

Fetch ldr cmp mla mul bne ldr cmp mla

Decode ldr cmp mla mul bne ldr cmp

Execute ldr cmp mla mul bne ldr

Commit ldr cmp mla mul bne

…

TIME

Processor works on 2 or 3

instructions at a time

Dealing with control hazards:
Speculation!

▪ Processors do not wait for branches to execute

▪ Instead, they speculate (i.e., guess) where to go next
+ start fetching

▪Modern processors use very sophisticated
mechanisms
▪ E.g., speculate in Fetch stage—before processor even

knows instrn is a branch!

▪ >95% prediction accuracy

▪ Still, branch mis-speculation is major problem

CMU 15-418/15-618, Spring 2019

Pipelining Summary

▪ Pipelining is a simple, effective way to improve
throughput
▪ 𝑁-stage pipeline gives up to 𝑁 × speedup

▪ Pipelining has limits
▪ Hard to keep pipeline busy because of hazards

▪ Forwarding is expensive in deep pipelines

▪ Pipeline flushes are expensive in deep pipelines

 Pipelining is ubiquitous, but tops out at 𝑁 ≈ 15

CMU 15-418/15-618, Spring 2019

Out-of-Order Execution

CMU 15-418/15-618, Spring 2019

Increasing parallelism via
dataflow

▪ Parallelism limited by many false dependencies,
particularly sequential program order

▪Dataflow tracks how instructions actually depend on
each other

▪ True dependence: read-after-write

Dataflow increases parallelism by eliminating
unnecessary dependences

CMU 15-418/15-618, Spring 2019

Example: Dataflow in polynomial
evaluation

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

ldr

cmp mla

mul

bne

Lo
o
p

 i
te

ra
ti
o
n

Example: Dataflow in polynomial
evaluation

CMU 15-418/15-618, Spring 2019

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

...

ldr

cmp mla

mul

bne

Lo
o
p

 i
te

ra
ti
o
n

ldr

cmp mla

mul

bne

ldr mul

cmp

bne

Example: Dataflow polynomial
execution

▪ Execution only, with perfect scheduling & unlimited
execution units

▪ ldr, mul execute in 2 cycles

▪ cmp, bne execute in 1 cycle

▪ mla executes in 3 cycles

▪Q: Does dataflow speedup execution? By how much?

▪Q: What is the performance bottleneck?

CMU 15-418/15-618, Spring 2019

CMU 15-418/15-618, Spring 2019

ldr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

ldr

cmp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

ldr

cmp

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

ldr mul

cmp

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

ldr mul

cmp

mlabne

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

ldr mul

ldr

cmp

mla

mul

bne

cmp

bne

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

ldr mul

ldr

cmp

mla

mul

bne

ldr

cmp

mul

bne

mlacmp

bne

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

CMU 15-418/15-618, Spring 2019

ldr mul

ldr

cmp

mla

mul

bne

ldr

cmp

mul

bne

mla

ldr

cmp

mul

bne

ldr

cmp

mla

mul

bne

ldr

cmp

mul

bne

mla

ldr

cmp

mul

bne

ldr

cmp

mla
mul

bne

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

Example: Dataflow polynomial
execution

▪Q: Does dataflow speedup execution? By how much?

▪ Yes! 3 cycles / loop iteration

▪ Instructions per cycle (IPC) = 5/3 ≈ 1.67
(vs. 1 for perfect pipelining)

▪Q: What is the performance bottleneck?

▪ mla: Each mla depends on previous mla & takes 3 cycles

▪ This program is latency-bound

CMU 15-418/15-618, Spring 2019

Out-of-order (OoO) execution uses
dataflow to increase parallelism

▪ Idea: Execute programs in dataflow order, but give
the illusion of sequential execution

▪ This is a “restricted dataflow” model

▪ Restricted to instructions near those currently committing

▪ (Pure dataflow processors also exist that expose
dataflow to software)

CMU 15-418/15-618, Spring 2019

High-level OoO microarchitecture

CMU 15-418/15-618, Spring 2019

CPU

Fetch Decode Commit

Execute

Instruction Buffer

In-order In-orderOut-of-order

CPU

OoO is hidden behind
in-order frontend & commit

▪ Instructions only enter & leave instruction buffer in
program order; all bets are off in between!

CMU 15-418/15-618, Spring 2019

Fetch Decode Commit

Execute

Instruction Buffer

ABC

Example: OoO polynomial
evaluation

▪Q: Does OoO speedup execution? By how much?

▪Q: What is the performance bottleneck?

▪ Assume perfect forwarding & branch prediction

CMU 15-418/15-618, Spring 2019

Example: OoO polynomial
evaluation pipeline diagram

CMU 15-418/15-618, Spring 2019

Fetch &

Decode
ldr

Execute ldr

Commit ldr

TIME

Example: OoO polynomial
evaluation pipeline diagram

CMU 15-418/15-618, Spring 2019

Fetch &

Decode
ldr cmp

Execute ldr cmp

Commit ldr cmp

TIME

Example: OoO polynomial
evaluation pipeline diagram

CMU 15-418/15-618, Spring 2019

Fetch &

Decode
ldr cmp mla

Execute ldr cmp mla

Commit ldr cmp mla

TIME

Example: OoO polynomial
evaluation pipeline diagram

CMU 15-418/15-618, Spring 2019

Fetch &

Decode
ldr cmp mla mul

Execute ldr cmp mla mul

Commit ldr cmp mla mul

TIME

Example: OoO polynomial
evaluation pipeline diagram

CMU 15-418/15-618, Spring 2019

Fetch &

Decode
ldr cmp mla mul bne

Execute ldr cmp mla mul bne

Commit ldr cmp mla mul bne

TIME

Example: OoO polynomial
evaluation pipeline diagram

CMU 15-418/15-618, Spring 2019

Fetch &

Decode
ldr cmp mla mul bne ldr cmp mla mul bne ldr cmp mla mul bne ldr

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

TIME

Example: OoO polynomial
evaluation pipeline diagram

▪Wait a minute… this isn’t OoO… or even faster
than a simple pipeline!

▪Q: What went wrong?

▪ A: We’re throughput-limited: can only issue 1 instrn

CMU 15-418/15-618, Spring 2019

Fetch &

Decode
ldr cmp mla mul bne ldr cmp mla mul bne ldr cmp mla mul bne ldr

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

TIME

High-level Superscalar OoO
microarchitecture

▪Must increase pipeline width to increase ILP > 1

CMU 15-418/15-618, Spring 2019

CPU

Fetch Decode

Execute

Commit

Execute Execute

Instruction Buffer

In-order In-orderOut-of-order

Fetch Decode Commit

Example: Superscalar OoO
polynomial evaluation

CMU 15-418/15-618, Spring 2019

Fetch &

Decode

ldr

cmp

Execute

Commit

TIME

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Spring 2019

Fetch &

Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

Commit

TIME

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

Example: Superscalar OoO
polynomial evaluation

Example: Superscalar OoO
polynomial evaluation

CMU 15-418/15-618, Spring 2019

Fetch &

Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr

Commit

TIME

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

Example: Superscalar OoO
polynomial evaluation

CMU 15-418/15-618, Spring 2019

Fetch &

Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr

mul

Commit

TIME

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

Example: Superscalar OoO
polynomial evaluation

CMU 15-418/15-618, Spring 2019

Fetch &

Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp

mla

mul

Commit

TIME

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

Example: Superscalar OoO
polynomial evaluation

CMU 15-418/15-618, Spring 2019

Fetch &

Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne

mla

mul ldr

Commit

TIME

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

Example: Superscalar OoO
polynomial evaluation

CMU 15-418/15-618, Spring 2019

Fetch &

Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

TIME

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

Example: Superscalar OoO
polynomial evaluation

CMU 15-418/15-618, Spring 2019

Fetch &

Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

ldr cmp mla bne cmp mla bne

mul ldr mul

TIME

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

ldr r5, [r3], #4

cmp r1, r3

mla r0, r4, r5, r0

mul r4, r2, r4

bne .L3

Example: Superscalar OoO
polynomial evaluation

CMU 15-418/15-618, Spring 2019

Fetch &

Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

ldr cmp mla bne cmp mla bne

mul ldr mul

TIME

Observe:

▪ Front-end &
commit in-order
(i.e., left-to-right)

▪ Execute
out-of-order

Example: Superscalar OoO
polynomial evaluation

CMU 15-418/15-618, Spring 2019

Fetch &

Decode

ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr

cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp

Execute

ldr cmp bne mul ldr cmp bne mul ldr cmp

mla mla mla mla mla

mul ldr cmp bne mul ldr cmp bne mul

Commit

ldr cmp mla bne cmp mla bne cmp mla bne cmp mla

mul ldr mul ldr mul ldr mul

TIME

One loop iteration / 3 cycles!

Structural hazards: Other
throughput limitations

▪ Execution units are specialized
▪ Floating-point (add/multiply)

▪ Integer (add/multiply/compare)

▪ Memory (load/store)

▪ Processor designers must choose which execution
units to include and how many

▪ Structural hazard: Data is ready, but instr’n cannot
issue because no hardware is available

CMU 15-418/15-618, Spring 2019

Example: Structural hazards can
severely limit performance

CMU 15-418/15-618, Spring 2019

Fetch &

Decode

ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr

cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp

Mem

Execute
ldr ldr ldr ldr ldr ldr

Int

Execute
cmp bne cmp bne cmp bne cmp bne cmp bne cmp

Mult

Execute
mla mul mla mul mla mul

Commit

ldr cmp mla mul ldr mla mul ldr mla

bne cmp bne cmp

One loop iteration / 5 cycles

Superscalar scheduling is complex
& hard to scale

▪Q: When is it safe to issue two instructions?

▪ A: When they are independent

▪ Must compare all pairs of input and output registers

▪ Scalability: 𝑂(𝑊2) comparisons where 𝑊 is issue
width

CMU 15-418/15-618, Spring 2019

OoO x86: Microcoding

▪ Each x86 instruction describes several operations

▪ E.g., add [esp+4], 5 means:
1. Load Mem[esp+4]
2. Add 5 to it
3. Store result to Mem[esp+4]

▪ This is too much for (fast) hardware

▪ Instead, hardware decodes instr’ns into micro-ops
 Rest of pipeline uses micro-ops

CMU 15-418/15-618, Spring 2019

…But wait, there’s more!

▪Many issues we could not touch on

▪ How to eliminate false dependences

▪ E.g., write-after-read / write-after-write

▪ How to track dependences through memory

▪ E.g., storeload forwarding

▪ How to rollback mis-speculations

CMU 15-418/15-618, Spring 2019

Recall from last time:
ILP tapped out… why?

CMU 15-418/15-618, Spring 2019

Limitations of ILP

▪ ILP works great! …But is complex + hard to scale

▪ 4-wide superscalar × 20-stage pipeline = 80 instrns in flight

▪ High-performance OoO buffers hundreds of instructions

▪ Pipelines can only go so deep
▪ Branch misprediction penalty grows

▪ Frequency (GHz) limited by power

▪ Programs have limited ILP
▪ Even with perfect scheduling, >8-wide issue doesn’t help

▪ Dynamic scheduling overheads are significant

▪ Out-of-order scheduling is expensive

CMU 15-418/15-618, Spring 2019

Limitations of ILP Multicore

▪ ILP works great! …But is complex + hard to scale

▪ From hardware perspective, multicore is much more
efficient, but…

▪ Parallel software is hard!
▪ Industry resisted multicore for as long as possible

▪ When multicore finally happened, CPU 𝜇arch simplified
 more cores

▪ Many program(mer)s still struggle to use multicore
effectively

CMU 15-418/15-618, Spring 2019

