
The Go frontend for GCC

Ian Lance Taylor
Google

iant@google.com

Abstract

A description of the Go language frontend for gcc. This
is a new frontend which is a complete implementation
of the new Go programming language. The frontend
is currently some 50,000 lines of C++ code, and uses its
own IR which is then converted to GENERIC. I describe
the structure of the frontend and the IR, issues that arise
when compiling the Go language, and issues with hook-
ing up any frontend to the gcc middle-end.

1 Introduction

Go is a new programming language designed by Robert
Griesemer, Rob Pike, and Ken Thompson, with ma-
jor contributions by Russ Cox and the author. Go is
being developed as an free software project hosted at
http://golang.org/. There are currently two Go
compilers. The first is based on the Plan 9 C compiler
originally written by Ken Thompson; this compiler is
known as the gc compiler. This paper describes the sec-
ond, a frontend to gcc, generally known as gccgo.

A goal of the gccgo project is to be a typical gcc fron-
tend. It is intended to require minimal changes to other
parts of gcc. Like all gcc frontends, it generates assem-
bly code which is then processed by ordinary unmodi-
fied assemblers and linkers. This approach is different
from the less conventional gc compiler, which does sig-
nificant code generation work at link time.

Gccgo is written in C++. As of this writing it is slightly
more than 50,000 lines, including blank lines and com-
ments.

2 Intermediate Representation

The intermediate representation, known as GOGO, is a
collection of C++ classes. The initial form of GOGO

closely mirrors the Go source code read from the in-
put files. This is intended to make it easy to imple-
ment whatever analysis may seem to be desirable. Af-
ter all the input files have been read, the GOGO struc-
tures are lowered to a simpler version, eliminating loop
constructs, tuple assignments, and other complex state-
ments. This version of GOGO is eventually converted
to GENERIC and passed to gcc’s middle-end.

The main structures in GOGO are as follows:

• Gogo. The IR for the entire input.

• Statement. A statement.

• Expression. An expression.

• Type. A type.

• Block. A block in the program—a list of state-
ments.

• Named_object. A named object: a function,
variable, type, constant, or package.

Each of these structures is a class in gccgo’s source
code. The Statement, Expression and Type
classes are base clases with pure virtual functions.
Base children of these classes, such as Assignment_
statement, implement the virtual functions. For
each child class, there is an enum value such as
STATEMENT_ASSIGNMENT. The base classes have a
classification method that returns the enum as-
sociated with the child class. Thus there are two dif-
ferent ways to use a pointer to an instance of the base
class: by calling a virtual function, or by calling the
classification method and taking the appropriate
action.

Each class in Gogo implements a traverse method;
the arguments vary depending on the class. Each
traverse method takes an argument of type

1

Traverse. Traverse is a base class with virtual
methods such as statement, expression, etc. The
Traverse constructor takes a bitmask listing the ele-
ments of interest. Code that needs to traverse the tree, or
a portion of it, creates a child class of Traverse that
overrides the virtual functions that it needs to use, and
then calls the appropriate traverse method. Calling
the traverse method on the single Gogo object will
traverse the entire tree.

This approach permits code to be grouped as appropri-
ate. Operations can be implemented as a function of the
class or the operation may handle all relevant classes
directly. An example of the former approach is con-
version to GENERIC, that all classes must implement
differently. An example of the latter is the conversion of
&& and || expressions to if statements, for which all the
required work can easily be done in a single function.

Memory usage is always a consideration for any com-
piler IR. The use of child classes in GOGO has the ad-
vantage that it is very natural to only allocate the re-
quired amount of space for each node. On the other
hand, it adds a virtual function table pointer to each
node. In effect the node classification is encoded twice:
as an enum field and as a virtual function table pointer.
It would be possible to replace the the virtual func-
tion table pointer with an explicit table indexed by the
enum value, or by making classification a vir-
tual method, at the cost of some ease of debugging.

3 Language

This paper does not provide a general description of the
Go language. I will just touch on a few aspects of the
language that are worth noting for their effects on the
frontend.

Go is defined by an explicit specification that may be
found at http://golang.org/doc/go_spec.
html. It is not defined by an implementation. An ex-
plicit language specification was a requirement for im-
plementing two different compilers, and implementing
two compilers was a great help in clarifying the spec.

3.1 Parsing

Go is designed to be easy to parse. Gccgo uses a re-
cursive descent parser that closely follows the grammar
provided in the specification.

Go does not require names to be defined before they are
used. A consequence of this is that it may not be im-
mediately clear at parse time whether a particular token
sequence is a type or an expression. For example, f(v)
may be a call of the function f passing the variable v, or
it may be a type conversion of the variable v to the type
f. The type could even look like an expression, as in
(*p)(v); that is either a call to the function to which
the variable p points or a conversion to the pointer type
*p.

Similarly, the sequence t.m may select the field m from
a variable t of struct type, or it may name the method m
of the type t.

Cases like these do not complicate the parser. The parser
simply creates a IR node representing an undetermined
result. After parsing is complete, all the names are de-
fined (an undefined name is an error) and a lowering
pass converts the undetermined nodes to the appropriate
classification.

The only slightly complex parse in Go occurs in func-
tion definitions. When defining a function, parameters
names may be all omitted or all present. When param-
eter names are present, several consecutive parameters
may have the same type. Thus, these are both valid func-
tion definitions in Go:

func f1(t, t, t, t, t, t, t) { }
func f2(v, v, v, v, v, v, v int) { }

The first is only valid if t is a type, but the parser may
have not yet seen the type definition. Gccgo parses this
using arbitrary lookahead, up to the first point where a
name is not immediately followed by a comma. This is
the only place where arbitrary lookahead occurs in the
gccgo parser. The gc compiler uses a different approach:
it has a nonterminal for a comma-separated identifier
list, which is then later lowered as appropriate.

3.2 Constants

Go constants are untyped and of arbitrary size (the lan-
guage does permit an implementation to restrict the
size). They only acquire a type when they are used out-
side of a constant expression, e.g., in an assignment. At
the point of use, the value of the expression must fit in
the type. Before then, there is no limit. E.g., this is valid
Go:

2

var v = (1 << 100) >> 99

Fortunately gcc is already linked with the GMP, MPFR
and MPC libraries, and they provide support for infinite
precision constants. Gccgo represents constants using
those libraries, and converts to types like double_int
and REAL_VALUE_TYPE when generating GENERIC.

3.3 Symbol Names

Gccgo must mangle all externally visible symbol names.

• Every Go file is always contained within a pack-
age. The same name may be used in different pack-
ages. Therefore, mangling is required to distin-
guish them.

• Although Go does not support function overload-
ing, it does support methods on arbitrary named
types. Mangling is required for method functions.

• Gccgo must generate a type descriptor for all
named types, all pointers to named types, and all
unnamed types which are converted to interface
types. The names of these type descriptors must
be mangled.

The mangling is straightforward and will not be docu-
mented here. There is one issue that deserves comment.
Go permits different packages to have the same name,
so a simple mangling of the package name is insuffi-
cient. The gc compiler rewrites the symbol names at
link time, but that technique is not available to gccgo.
Instead, gccgo supports a -fgo-prefix option that
may be used to set a unique prefix for the package being
compiled. The option takes any string as an argument; a
natural string to use would be the name under which the
package will be installed.

3.4 Language Extension

Gccgo adds one language extension to the Go language:
the ability to specify the assembler name of a function
declaration. This uses syntax similar to what gcc sup-
ports for C.

func close(int) __asm__ ("close")

This may only be used for a function declaration, not a
definition. The expectation is that the function will not
be defined in Go. Any calls to the function will avoid
the name mangling described above and simply result
in a call to the name given in the __asm__ declaration.
This is used to make it easier for Go code to call C code
directly.

4 Passes

The gccgo frontend is arranged as a series of passes over
the input.

1. All the input files are lexed and parsed. The input
files must all belong to the same package, and all
the input files for a given package must be provided
to the compiler at the same time. This generates the
initial GOGO representation that closely matches
the source files.

2. Gccgo walks through the set of predeclared identi-
fiers: predeclared types like int and predeclared
functions like new. For each predeclared identi-
fier, gccgo checks for an undefined reference at the
package level. If a reference is found, gccgo de-
fines it as the predeclared identifier. These identi-
fiers can not be declared before compilation, as Go
permits them to be redefined at package scope, and
the parser may see references to the package scope
identifiers before they are defined.

3. Gccgo walks the whole tree looking for types that
can have methods: named types, interface types,
and struct types. Gccgo finalizes the set of methods
for each type. This is where gccgo implements the
promotion of methods from anonymous embedded
fields to become methods for the enclosing type.
Gccgo creates a stub method—a tiny function—for
each promoted method where necessary. The stub
method simply calls the method on the embedded
field.

4. Gccgo lowers the parse tree. This pass walks the
whole tree and performs several different opera-
tions. The goal of this pass is to simplify the tree
to remove complex statements and looping con-
structs.

• When statements include expressions with
side-effects at the top level, gccgo changes

3

those expressions into assignments to tempo-
rary variables and places the new assignments
before the statement. This implements Go’s
rules about evaluation order within a single
statement. The expressions with side effects
are function calls and send or receive expres-
sions on a channel.

• Gccgo converts Assignment statements like
a += b to a = a + b, which is safe after
side effects have been moved.

• Gccgo converts a++ to a = a + 1, and
similarly for a--.

• Gccgo converts tuple assignments such as
a, b = c, d into a series of single as-
signment statements using temporary vari-
ables.

• Gccgo converts special purpose tuple assign-
ments, such as v, ok = m[i] into calls to
runtime library functions.

• Gccgo converts return statements in func-
tions with named result parameters into one
or more assignments to the result parameters
followed by a return. This permits defer
closures to adjust the results after recovering
from a panic.

• Gccgo converts switch statements with
cases that are not constant or whose switch
variable does not have integer type to a series
of if statements.

• Gccgo converts type switch statements to a
series of if statements.

• Gccgo lowers for statements to use if and
goto statements. If there is a range clause,
gccgo inserts calls to runtime library func-
tions as needed.

• Gccgo converts references to unknown names
to references to variables, functions, con-
stants or types as appropriate. Gccgo issues
an error if the name was never defined.

• Gccgo folds constant expressions. This must
be done in the frontend because it must be
done in infinite precision.

• Gccgo gives any uses of the predeclared con-
stant iota a specific numeric value.

• Gccgo converts calls to the special prede-
clared functions new and make to special
node types.

• Gccgo notes all functions that call the special
predeclared function recover. This is not a
lowering step, but the information is used in
a later pass; see section 7.5.

• Gccgo converts cases where a return state-
ment returns multiple results from a call, or
where multiple results from a call are passed
to another call, to use a series of temporary
variables.

• Gccgo converts calls to functions with vari-
able numbers of arguments to build a slice for
the final argument.

• Gccgo looks up field and method names for
references within structs. This can only be
done after methods are finalized by the previ-
ous pass.

• Gccgo simplifies composite literals, remov-
ing key values for struct, array and slice liter-
als.

5. Gccgo walks the IR looking for all types, and
verifies that they are correct. This is where the
compiler gives an error for variable array lengths,
maps whose key type is a struct or array type, or
named types that are defined in terms of them-
selves in ways that can not work. Go permits
named types to refer themselves when the size does
not matter, as in type T *T or type T []T
or type T func() T. This pass detects case
which are forbidden, such as type T T.

6. Gccgo stops at this point if the -fsyntax-only
option was used.

7. Gccgo walks the IR and determines the types of all
constants, and uses that to determine the types of
variables whose type is implied by the initializa-
tion expression. In order to determine the type of
a constant expression gccgo must know the context
in which the expression is used (e.g., if a constant
is passed to a function it gets the type of the func-
tion parameter), so this pass is done using a specific
traversal rather than the general mechanism. Dur-
ing this pass gccgo also looks for global variables
whose initializers will require running an initializa-
tion function at runtime.

8. Gccgo walks the IR and checks all types in state-
ments and expressions, issuing errors as appropri-
ate.

4

9. Gccgo walks the IR and issues an error if a func-
tion with results can fall off the bottom without an
explicit return statement.

10. Gccgo builds export information for all globally
visible identifiers.

11. Gccgo finds all interface types with hidden meth-
ods. It then walks the IR looking for all named
types that implement those interfaces. For each
such type/interface pair, gccgo builds an interface
method table. Gccgo will use this table if a value of
the named type is ever converted to a value of the
interface type. Normally gccgo builds these tables
as needed. However, when the interface type has
hidden methods, the interface method table has to
refer to the corresponding hidden methods of the
named type. Such a type conversion could occur
in a different package, but when gccgo is compil-
ing that other package it would not be able to build
the required interface method table, since the hid-
den methods of the named type will be static to this
package. So gccgo must build all such tables here,
in case it needs them when compiling some other
package.

12. Gccgo walks the IR looking for all uses of && and
|| and converts them into if statements. This
simplifies the following pass.

13. Gccgo walks the IR looking for all expressions and
subexpressions with side effects, and rewrites them
to use temporary variables that are set before the
statement. Gccgo does this for top level expres-
sions during an earlier pass, in order to split up
tuple assignments. Here gccgo does this for all
subexpressions. This implements Go’s rules about
order of expression evaluation.

14. Gccgo looks for functions that call recover. For
each such function, it renames the function, adds
a new bool parameter, and creates a thunk un-
der the old name that calls the renamed function.
The value passed for the new parameter is whether
the call to the recover function may recover a
panic. Gccgo then walks the IR looking for calls to
recover and rewriting them so that the function
only calls recover if the new parameter is true.
This is described in more detail in section 7.5.

15. Gccgo walks the IR looking for go and defer
statements. It changes them to gather their argu-

ments into structs, and pass a pointer to that struct
to a runtime function. It creates little thunks that
receive a pointer to the struct and call the real func-
tion from the go or defer statement, unpacking
the arguments from the struct.

16. Finally, gccgo walks the list of global declarations
and generates GENERIC for all functions, global
variables, global types, and global typed constants.
In the future it would be desirable to generate GIM-
PLE directly, to avoid the conversion to GENERIC.
However, no frontend does that currently, there is
no interface for it, and the GIMPLE requirements
are undocumented.

5 Import and Export

All Go code lives in a package. Packages export data
about types, functions, variables and constants, and they
import that data from other packages. The exported data
is intended to be quickly consumed at compile time.

5.1 Finding Export Data

Gccgo currently puts the export data in a special section
in the output file, named .go_export. This should
work with any object file format that supports named
sections. However, the import code, which needs to look
for this section in the import file, currently only works
for ELF, or when using a build procedure that copies the
export data into a separate file.

When gccgo sees the statement import "p", then if
p is an absolute path it simply opens the file. If not, it
searches for the file in the directories specified by the
-I and -L options. For each directory, it tries to open
the following file names:

• p

• p.gox

• libp.so

• libp.a

• p.o

5

The intent is to permit packages to provide .gox files
that only contain the export data, and are separate from
the actual compiled code.

Gccgo can read the export data in three different ways:
as a file containing only export data, as an ELF object
file containing export data in the .go_export section,
or as an archive containing one or more ELF object files.
In the last case the contents of the .go_export sec-
tions are concatenated; this is convenient when packing
several different packages into a single archive.

5.2 Export Data Format

The export data format is readable as text, but it is a bi-
nary format in the sense that spaces and newlines must
appear exactly as expected. The data is more or less Go
syntax, although for historical reasons it uses explicit
semicolons rather than relying on newlines. In this pa-
per I will describe the information in the export data, but
not the precise format.

5.2.1 Header

The export data starts with a header, as follows:

• A version number or magic number, the four byte
string v1;\n.

• The package name.

• The unique package prefix, as specified by the
-fgo-prefix option or the default of go.

• The package priority. This is used to run package
initialization routines in the correct order, such that
a package’s initialization is complete before start-
ing the initialization of any package that imports it.
The priority of a package that does not import any
other packages is zero. The priority of a package
that does import other packages is one more than
the largest priority of any imported package. This
simple mechanism works because the Go language
prohibits package import loops.

• An optional list of the initialization routine of this
package, if any, and the initialization routines for
any packages that it imports. Each entry in the
list is the package name, the name of the initial-
ization function, and the package priority. This is

used when compiling the main package to call all
required initialization routines. The list is inclu-
sive, in that it includes the initialization routines of
all imported packages and of all packages that they
import.

5.2.2 Globals and Types

The export data header is followed by the export data
for each exported function, variable, type, and constant.
For functions and variables the export data is simply the
name and type. For constants it is the constant expres-
sion and the type if it has one.

Exporting types is more complex. A type may refer to
itself, directly or indirectly; gccgo handles this by giv-
ing each type a reference number. The first time gccgo
exports a type, it writes out the reference number and
the definition. Subsequent references to the type in the
export data use just the reference number.

The various predeclared types can not be defined in
terms of any other type. Gccgo assigns a unique refer-
ence number to each predeclared type. These reference
numbers are all negative and range from -1 to -19.
Gccgo uses positive numbers for the reference numbers
used for types defined in the source code.

An exported function or variable may use a named type
imported from a different package. When this happens,
gccgo must fully define the type in the export data, as
the imported package may not be available during a later
compilation. Gccgo writes out the full name of an im-
ported type, including the package name and the pack-
age’s unique prefix.

When gccgo imports packages and reads a named type
imported from a different package, it saves the type in-
formation but does not permit the package being com-
piled to use the type. It is possible for gccgo to import
two different packages, both of which refer to the same
type that they imported from a third package. Gccgo
recognizes that case by the full name of the type, and
ensures that all references point to a single definition. If
gccgo then sees an import of that third package, it must
continue to use to single definition, and it must now
make the type available for use by the package which it
is compiling. This is complicated somewhat by import-
ing packages under different names, or even importing
the same package twice.

6

When the source code exports a type that is defined in
terms of a type which is not exported, gccgo must put
the full definition of the unexported type in the export
data, using a hidden name. When gccgo imports this
package, it must read the definition of the type, but it
must not make the type available to the package which
it is compiling.

5.2.3 Trailer

The export data ends with a checksum of all the data.
This checksum is not currently used. The intent is to
provide a way for build systems to see whether the ex-
port data of a package has been changed when the pack-
age is recompiled. If a package is changed and recom-
piled, but the export data has not changed, then there is
no need to recompile any other package that imports the
changed package. It is only necessary to relink any ex-
ecutables. This can be used to speed up rebuilds after a
change to, e.g., the body of a function.

6 GCC interface

Gcc is distributed with several different language fron-
tends: C, C++, Fortran, Java, Ada, Objective C, Objec-
tive C++. The gccgo project is simply adding another
frontend. In this section I’ll discuss what is required to
add a new frontend.

I will describe the state of the interface as of this writ-
ing. It is likely that things will change over time. Gcc’s
frontend interface is, as of this writing and as far as I
know, undocumented. All files are in the language sub-
directory, which for gccgo is simply named go.

6.1 GCC interface Files

Every gcc frontend has certain files with specified
names.

6.1.1 config-lang.in

The file config-lang.in is a shell script sourced
by the top level configure script. It sets some shell
variables:

• language: The name of the language, in this
case go.

• compilers: The name of the compiler proper,
the program linked against the gcc middle-end, in
this case go1.

• target_libs: The name of the top level
Makefile targets for any target libraries that
should be built for this language, in this case
target-libgo.

• gtfiles: The names of any files that must be
examined for the GTY markings used by the gcc
garbage collector.

• lang_dirs: Other top level Makefile targets
that should be built if the language is built. Gccgo
does not set this.

• subdir_requires: Other gcc frontends that
must be available in order for this frontend to be
built. This exists for the Objective C++ frontend,
which requires both the C++ and the Objective C
frontends to be present. Gccgo does not set this.

• boot_language: Set to yes if this language is
needed to bootstrap gcc itself. Gccgo does not set
this.

• boot_language_boot_flags: Options to
pass to make when building this language. Gccgo
does not set this.

• build_by_default: Set to yes if this lan-
guage is built by default. Gccgo does not set this.

• outputs: A list of files that will have
configure substitutions applied to them. Gccgo
does not set this.

6.1.2 Make-lang.in

The file Make-lang.in is a Makefile fragment
that is included in the gcc Makefile. It pro-
vides the rules for building the program listed in
compilers in config-lang.in. It must also
provide several targets whose names are based on the
language field in config-lang.in. That is, the
gccgo Make-lang.in defines the targets below, with
language replaced by go.

7

• language: this target must build the compiler
proper.

• language.all.cross: any tools required
for a cross compiler. For gccgo this builds
gccgo-cross.

• language.start.encap: any tools required
in order to run gcc. For gccgo this builds gccgo.

• language.rest.encap: anything that must
be built after gcc can run.

• language.info: build .info files.

• language.install-info: install .info
files.

• language.dvi: build .dvi files.

• language.pdf: build .pdf files.

• language.install-pdf: install .pdf files.

• language.html: build .html files.

• langage.srcinfo: build .info files in the
source directory for releases.

• language.srcextra: build any additional
source directory files required for a release, such
as yacc output.

• language.tags: build TAGS files.

• language.man: build man pages.

• language.srcman: build man pages in the
source directory for releases.

• language.install-common: install the
compiler proper and any supporting programs. For
gccgo this installs go1 and gccgo.

• language.install-plugin: install any-
thing needed by compiler plugins.

• language.install-man: install man pages.

• language.uninstall: uninstall everything.

• language.mostlyclean: clean most things.

• language.clean: clean everything that can be
rebuilt.

• language.distclean: clean everything cre-
ate by configure.

• language.maintainer-clean: clean ev-
erything that a maintainer can rebuild.

• language.stage1: copy all bootstrap files to
stage1/language.

• language.stage1: copy all bootstrap files to
stage2/language.

• language.stage3: copy all bootstrap files to
stage3/language.

• language.stage4: copy all bootstrap files to
stage4/language.

• language.stageprofile: copy all bootstrap
files to stageprofile/language.

• language.stagefeedback: copy all boot-
strap files to stagefeedback/language.

6.1.3 lang.opt

The file lang.opt lists language specific options. The
format is the same as the general .opt files, and is de-
scribed in the gcc internals documentation.

6.1.4 lang-specs.h

The file lang-specs.h may optionally exist. It is a
C file that consists only of a partial initializer for the
default_compilers array in gcc.c. This may be
used to tell the gcc driver program how to compile files
for a given extension. For gccgo this file gives a spec for
compiling files with an extension of .go.

6.1.5 subdir-tree.def

The file subdir-tree.def may optionally exist.
Here subdir is the name of the subdirectory where the
config-lang.in file is found, which need not be the
same as the language defined in that file. In particu-
lar, they are different from the C++ frontend, for which
subdir is cp but language is c++. In any case,
the file subdir-tree.def, if it exists, contains addi-
tional DEFTREECODE definitions used with GENERIC.
This permits language specific extensions to GENERIC.
This feature is used by the C, C++, Objective C, and Ob-
jective C++ frontends.

8

6.2 Driver

Several gcc frontends have a driver program. For
gccgo the driver is simply named gccgo. This driver
program compiles and links code written in the lan-
guage. The main gcc driver may be set up to invoke
the appropriate compiler based on the extension of the
source file (see the description of lang-specs.h,
above). The main purpose of the language-specific
driver program is to add required libraries to the link
line. The driver program is built by the language.
all.cross and language.start.encap targets
in Make-lang.in described above, and is installed
by the language.install-common target.

The language specific driver program does not contain
a main function. Instead, it is linked with the make
variable $(GCC_OBJS). The language specific driver
must provide two functions and one variable.

• The driver calls lang_specific_pre_link
after doing any required compilation and before
doing any linking. This function takes no argu-
ments and returns int. It should return 0 on suc-
cess and some other value on failure. The gccgo
version simply returns 0. This Java frontend uses
this hook to implement the --main option.

• The global variable lang_specific_extra_
outfiles has type int. The gcc driver uses this
to increase the size of the outfiles array that the
driver code builds to hold the output file names.
The gccgo driver simply sets this to 0. The Java
frontend sets this to 1 if it sees the --main option.

• The function lang_specific_driver does
most of the work. The gcc driver invokes the func-
tion after parsing the options but before doing any
work. It takes pointers to the list of options and
the number of added libraries, which it may up-
date. The gccgo driver uses this function to add the
-lgobegin and -lgo libraries when linking.

6.3 Frontend Language Hooks

As noted above, Make-lang.in must describe how
to build the compiler proper. This is the program that
the driver will invoke to compile a source file into an as-
sembly file. Gccgo names this program go1. It must be

built from object files linked against libbackend.a,
generally via the make variable $(BACKEND). The
language compiler may provide a main function, but it
does not have to.

The language compiler must define a global vari-
able named lang_hooks, of type struct lang_
hooks. This variable should be initialized to LANG_
HOOKS_INITIALIZER. This initializer value is con-
trolled by a set of macros whose names begin with
LANG_HOOKS_. These macros are defined in the
file langhooks-def.h. The usual pattern is for
a frontend file to include langhooks-def.h, and
then for each required language hook to #undef the
LANG_HOOKS_ macro and #define it to a hook ap-
propriate for the frontend. These #undef #define
pairs must occur before the use of LANG_HOOKS_
INITIALIZER. I don’t know of any documentation
for the language hooks, and I will not document them
all here. I will quickly mention the language hooks that
must always be implemented.

• LANG_HOOK_INIT initializes the frontend, and
must also call the following functions:

– build_common_tree_nodes

– set_sizetype

– build_common_tree_nodes_2

– build_common_builtin_nodes

• LANG_HOOK_PARSE_FILE must parse all the
input files, which may be found at in_fnames
of length num_in_fnames.

• LANG_HOOK_TYPE_FOR_SIZE must be de-
fined, and must return a tree for the frontend spe-
cific integer type for a given number of bits. It will
only be called for types of a precision used by the
frontend.

• LANG_HOOK_TYPE_FOR_MODE must be de-
fined, and return a tree for the frontend specific
integer type for a given mode.

• LANG_HOOK_GLOBAL_BINDINGS_P must be
defined. It must return an int that is 0 when not
processing a global variable. This hook is rather ill-
defined, and is only meaningful when the frontend
is calling into a backend function for some opera-
tion such as constant folding.

9

• LANG_HOOK_PUSHDECL must be defined. It
does not have to actually do anything, although
it will be called by the default implementation of
LANG_HOOK_BUILTIN_FUNCTION. This hook
is rather ill-defined.

• LANG_HOOK_GETDECLS must be defined. It
is called when generating STABS debugging in-
formation, and by the default implementation of
LANG_HOOKS_WRITE_GLOBALS.

• LANG_HOOK_WRITE_GLOBALS should be de-
fined to write out all global functions and variables.
The default definition will suffice for a language
that uses GENERIC as the IR, but not for fron-
tends such as gccgo that use a different IR. This
hook must call the following functions:

– cgraph_finalize_compilation_
unit

– wrapup_global_declarations

– check_global_declarations

– emit_debug_global_declarations

• convert is a function that should be a langhook
but is not. The middle-end will call this in a few
places to convert an expression to a type.

6.4 Frontend GTY Support

In order to support gcc’s internal garbage collector, the
language frontend must define certain types. These
types do not need to be used, but they must be defined
and marked with a GTY marker. These markers are doc-
umented in the gcc internals manual. The following
types must be defined.

• struct lang_type: language dependent con-
tents of a type in GENERIC. This may have just a
dummy field.

• struct lang_decl: language dependent con-
tents of a decl in GENERIC. This may have just a
dummy field.

• struct lang_identifier: language de-
pendent contents of an identifier. This must include
a field of type struct tree_identifier.

• union lang_tree_node: a union of tree_
node and lang_identifier, with a GTY
marker describing how to follow the chain field.

• struct language_function: a field that
will be attached to a struct function and
accessed by the cfun global variable, which the
frontend may use for any purpose.

The file(s) where these types are defined must be listed
in gtfiles in config-lang.in. The file(s) must
use #include to include the generated files as usual
for GTY markings.

7 Runtime

The Go language has a significant runtime component,
used to implement garbage collection, concurrency, type
reflection, and other features. Go also has a standard li-
brary. Gccgo puts this code in the libgo library, which
has four parts:

• A copy of the Go library distributed with the gc Go
compiler, with some minor changes.

• A system call package that replaces the syscall
package of the gc Go compiler.

• Runtime support copied from the gc Go com-
piler. This is mainly the memory allocator and the
garbage collector.

• Runtime support code called by code generated by
gccgo.

7.1 Go Library Differences

These are the differences between the gc Go library and
the gccgo Go library:

• Avoid cases where the gc library uses assem-
bly code. The gccgo version uses C code in-
stead. For example, in the gc Go library the
bytes.IndexByte function has different as-
sembler implementations for each supported target.
The gccgo version is written in C, and simply calls
__builtin_memchr.

10

• Directory reading and stat handling. The gc Go
library calls the system calls directly. The gccgo
version calls the C functions opendir and stat.

• Some test code is adjusted for the above changes,
and because gccgo does not yet implement
runtime.Caller.

7.2 System Call Support

The gccgo syscall package is completely different
from the gc library. The syscall package provides
low level system interfaces like open.

The gc library uses a program that runs gcc and reads the
debug information to generate struct definitions in Go
format. The gccgo library is similar, but instead uses a
new gcc option, -ggo, to generate debugging informa-
tion in Go format directly. The gccgo library uses -ggo
with a set of system header files at build time, and uses
a shell script to massage the output.

The gc library uses assembler code to run system calls
directly. The gccgo library instead calls the appropriate
C functions, using gccgo’s __asm__ extension.

7.3 Interfaces

Go supports values of interface type. An interface type
is simply a set of methods. Any value of a concrete (i.e.,
non-interface) type may be assigned to a variable of in-
terface type, provided the concrete type implements the
methods of the interface type. Given a value of inter-
face type, the program may call any method defined by
that interface type. A value of one interface type may
be converted to a value of a different interface type; this
will cause a runtime failure if the concrete type stored in
the interface value does not support all the methods of
the new interface type.

In other words, interface types provide type polymor-
phism, but, unlike C++, it is not tied to a type heirarchy.
Runtime conversion of interface types means that there
is a dynamic runtime component, similar to dynamic_
cast in C++ though again without a type heirarchy.

In order to support interfaces, and also the reflect
package that is used for type reflection, gccgo builds a
type descriptor for every type used in the program. The
name of the type descriptor is a mangled version of the

type. For a named type, the mangled name includes the
package name and the package’s unique prefix. Type
descriptors for named types are defined in the package
where the type is defined, but type descriptors for un-
named types are passed to gcc’s make_decl_one_
only function so that they can be shared between object
files. I won’t describe the format of the type descriptor
here.

Gccgo represents a value of the empty interface type
interface{} as a struct with two fields.

struct __go_empty_interface
{

const struct __go_type_descriptor

*__type_descriptor;
void *__object;

};

The __type_descriptor field is a pointer to the
type descriptor for the concrete type of the value as-
signed to the interface. If this field is NULL, then the
interface value is nil. If the value stored in the inter-
face is a pointer type, then the __object field is sim-
ply that pointer. Otherwise, the __object field is a
pointer to the actual value, which will have been copied
to the heap.

Gccgo represents a value of a non-empty interface type
also as a struct with two fields.

struct __go_interface
{

const void **__methods;
void *__object;

};

The __object field holds the value in the same way
as for an empty interface. The __methods field points
to a method table. The first field in the method table is
a pointer to the type descriptor of the value’s type. If
this field is NULL, then the interface value is nil. The
subsequent fields are function pointers, in the order of
the methods of the interface type. Thus a method table
is similar to a C++ virtual table. The method table for a
given interface type/value type pair is always the same.

When possible, the method table is constructed at com-
pile time. When a runtime conversion is done, the

11

method table is built at runtime. Interface and type
methods are kept sorted by name, so building a new
method table is linear in the number of methods. A pos-
sible future enhancement will be to use a hash table to
map interface type/value type pairs to existing method
tables.

Calling a method on a value of interface type requires
loading the method table, loading the appropriate func-
tion pointer from the method table, and calling the
function. Thus it is similar to a virtual function call
in C++. The Go method call iv.Method(arg) is
converted to code that in C would look like iv->__
methods[1](arg).

7.4 Stack Splitting

The Go language makes it very easy to create a new
thread of execution via the go statement. Naturally a
new thread of execution must allocate a stack. Making
the stack too large will waste address space. Making
the stack too small risks stack overrun. Gccgo address
this problem via stack splitting. The start of each func-
tion has a short sequence of instructions, typically just
two instructions, which checks whether there is enough
room on the current stack for the function’s stack frame.
If there is not, a new stack segment is automatically al-
located, in such a way that when the function returns
the stack automatically moves back to the old stack seg-
ment.

On i386, for a function with a stack frame smaller than
256 bytes, the initial instructions are simply

cmpl %gs:48, %esp
jb .L2

Normally the stack does not need to be split, and the
branch is not taken. So while stack splitting does intro-
duce additional overhead to every function, that over-
head is relatively small.

Stack splitting has the potential to be generally use-
ful, and is implemented in gcc’s middle-end via the
-fsplit-stack option. Gccgo automatically turns
on the option.

7.5 Panic and Recover

The predeclared functions panic and recover, in
conjunction with the defer statement, serve as a dy-
namic exception mechanism. When Go code calls
panic, the Go runtime walks up the stack, executing
functions passed to the defer statement. If a deferred
function calls recover, the stack walk is stopped, and
the value passed to panic is returned by recover. If
recover is called by a deferred function when no call
to panic is in effect, recover returns nil.

If recover is called by a function which was not the
immediate argument to defer, it returns nil. In other
words, if defer is used to execute a function, and
that function calls another function that in turn calls
recover, then the call to recover should return nil
even if there is a panic in progress. This permits de-
ferred functions to call functions which use panic and
recover themselves without getting confused by the
fact that there is an ongoing panic.

The stack walk does not actually unwind the stack. The
calls to the deferred functions are executed as though
they were called directly by panic. This permits them
to use the runtime.Callers function to get a stack
trace (gccgo does not currently implement runtime.
Callers, but eventually it will). If the deferred func-
tion calls recover to interrupt the stack walk, the stack
is unwound after the deferred function returns, and ex-
ecution continues at the caller of the function that ran
defer (or at the next deferred function if that function
ran defer more than once).

The most complex issue is that when a program calls
recover, it is necessary to know whether the call is
being made by a function that was the immediate ar-
gument to defer. The gc compiler determines this by
passing the argument frame pointer to recover, which
uses it to get the stack pointer of the caller of recover.
The gc stack frame permits it to use that to get the caller
of the caller of recover, to see whether recover
was called at the appropriate location on the call stack.

This procedure would be difficult to implement in
gccgo. Since gccgo uses the standard ABI for whatever
target it is configured for, unwinding the stack is much
more difficult. The unwind library does not provide the
necessary interfaces. Gccgo’s stack splitting code intro-
duces additional stack frames at unpredictable moments,
and they are hard to identify.

12

Instead, gccgo checks whether a defer statement may
be invoking a function which calls recover. The
defer statement always creates a thunk that calls the
actual deferred function with the appropriate arguments.
It is that thunk that is stored on the runtime’s defer
stack. If the deferred function may call recover, the
thunk calls the runtime function __go_set_defer_
retaddr. It passes the address of a label immediately
after the call to the actual deferred function. This uses
gcc’s existing address-of-label extension. This label is
thus the return address of the deferred function.

For any function that calls recover, gccgo inserts
a call to __builtin_return_address. A func-
tion can always reliably determine its immediate re-
turn address. That return address is passed to the run-
time function __go_can_recover. That function
can compare the return address to the address saved
by __go_set_defer_retaddr, if any. If the ad-
dresses match, then the call to recover can succeed,
and __go_can_recover returns 1. Otherwise, it re-
turns 0. This value is saved in a compiler-created local
variable, and the actual call to recover is expanded to
check that local variable.

That works for normal cases, but it does not handle the
case in which the function that call recover splits the
stack on entry. In that case __builtin_return_
address will return the address of the stub which
restores the old stack, rather than the address of the
caller. To avoid that problem, gccgo splits any func-
tion which calls recover into two functions. A small
thunk which uses at most a very small stack frame, and
the real function. The small thunk is marked to not split
the stack. It calls __go_can_recover, and passes
the result to the real function via a compiler-created ad-
ditional hidden parameter. The real function is marked
uninlinable to ensure that it is not inlined into the small
thunk causing the latter to have a large stack frame.

That is sufficient to let us know whether recover
should return a panic value if there is one, at the cost
of having an extra thunk for every function which calls
recover.

Now for the panic function. It walks the list of de-
ferred functions, calling them as it goes. When a de-
ferred function sucessfully calls recover and returns,
the panic stack is marked. This stops the calls to the de-
ferred functions, and starts a stack unwind phase. The
unwinding is done using gcc’s general unwind mech-

anism. This means that every function which calls
recover has an exception handler. The exception han-
dlers are all the same: if this is the function in which
recover returned a value, then simply return from the
current function, effectively stopping the stack unwind.
If this is not the function in which recover returned a
value, then resume the stack unwinding, just as though
the exception were rethrown in C++.

In order to ensure that all defer handles are run in all
cases, any function that uses defer is wrapped like
this. Here the function __go_check_defer is the
simple exception handler mentiond above. The function
__go_undefer runs all functions on the defer stack
associated with its argument. Of course, one of those
functions may call panic, which is why there is an ex-
ception handler in the finally clause. The compiler
generated variable DEFER.0 is used to handle defer
correctly when functions are inlined.

void *DEFER.0;
try

{
try

{
// Function body.

}
catch (...)

{
__go_check_defer (&DEFER.0);
return;

}
}

finally
{
lab:

try
{

__go_undefer (&DEFER.0);
}

catch (...)
{

__go_check_defer (&DEFER.0);
goto lab;

}
}

13

7.6 Goroutines

Currently gccgo runs every goroutine in a separate
thread. This is inefficient. It would be much better to
multiplex goroutines onto threads, as the gc compiler
does.

8 Optimization

The gccgo frontend currently does very little optimiza-
tion, though of course all of gcc’s middle-end optimiza-
tions are available. There are various possible optimiza-
tions appropriate for the frontend in the future.

• Because Go only permits calling declared func-
tions, and because function declarations either
come from source code which the compiler can see
or from export data which the compiler generates,
there is a lot of scope for automatically generated
function annotations.

– Automatically annotate const/pure functions.
– Annotate which pointer arguments escape the

function, permitting pointers passed to the
function to be stored on the stack in some
cases.

– Simple cross-package inlining for small func-
tions.

– Annotate which array and struct arguments
are not changed, permitting passing a pointer
instead.

• All array, slice, and string indexes in Go are
bounds checked. VRP can not always see when
these bounds checks can be eliminated because the
middle-end does not know that, e.g., strings in Go
are immutable. The frontend could do a better job
in some cases.

• Cross package inlining in the frontend makes it
possible to devirtualize interfaces in some cases.
The middle-end is unlikely to be able to turn the
method call sequence back into a direct function
call, but the frontend could.

• Switch statements could be better optimized, us-
ing a combination of if statements and SWITCH_
EXPR when some but not all of the cases are con-
stants.

• Anything the compiler can do to give hints to the
garbage collector could be useful.

9 Debugging

The output of gccgo can be used with gdb today, but it is
awkward. Doing a better job is going to require changes
to gdb.

• A major debugging issue is the names of function
and global variables. The Go name for a function
or variable always includes a package name. The
package name and function/variable name are sep-
arated by a period. Gdb does not expect names to
contain a period, so all references to these names
have to be quoted and tab completion does not
work properly. This makes it painful to set break-
points by name; I often set them by filename and
line number instead.

• There are several Go runtime types which gdb will
need to learn about, either via Python scripts or
a direct port: strings, slices, interfaces, channels,
maps, type descriptors. Right now printing these
values is just like printing a struct in C.

• Debugging split stack code is quite awkward in gdb
today. When you single step into a function, and it
splits the stack, you need to single step through the
stack splitting code down to the branch back to the
function. This needs to be improved.

• Gdb’s support for multi-threaded programs is func-
tional but often awkward to use. Go programs tend
to have many goroutines. How to debug such pro-
grams effectively is an open question.

10 Future Work

The gccgo frontend is a work on progress. These are the
some of the goals.

• Increase the separation between the frontend
proper and the gcc interface.

• Implement the optimization ideas described above.

• Don’t use a single thread per goroutine, but instead
multiplex several goroutines onto a single thread.

• Improve the garbage collector, which is currently a
simple mark and sweep collector.

• The Go language continues to change, and the
gccgo frontend must continue to change with it.

14

