15-441 Computer Networks

Inter-Domain Routing

Professor Hui Zhang

hzhang@cs.cmu.edu

1

To Learn More About BGP

http://www.cambridge.intelresearch.net/~tgriffin/talk_tutoriasl/

Routing vs. Forwarding

Two Classes of Routing Protocols

Distance vector (RIP)

- Distribute path computation
- Keep only local link data
- Bellman-Ford algotrithm

* Link state (OSPF, IS-IS)

- Local path computation
- Distribute all link data
- Dijkstra's algorithm

Link State vs. Distance Vector

Link State

- Topology information is <u>flooded</u> within the routing domain
- Best end-to-end paths are computed locally at each router.
- Best end-to-end paths determine next-hops.
- Based on minimizing some notion of distance
- Works only if policy is <u>shared</u> and <u>uniform</u>
- ✤ Examples: OSPF, IS-IS

Vectoring

- Each router knows little about network topology
- Only best next-hops are chosen by each router for each destination network.
- Best end-to-end paths result from composition of all nexthop choices
- Does not require any notion of distance
- Does not require uniform policies at all routers
- ✤ Examples: RIP, BGP

IP Addressing and Forwarding

Routing Table Requirement

- For every possible destination IP address, give next hop
- Nearly 2³² (4.3 x 10⁹) possibilities!

Hierarchical Addressing Scheme

- Address split into network ID and host ID
 - E.g., CMU has one network ID shared by all hosts within CMU
 - All packets to given network follow same route, until they reach destination network
- * Fields
 - pfx
 Prefix to specify split between network & host IDs
 - network 2^x possibilities
 - host 2^y possibilities

IP Address Classes

Class A

• mit.edu: 18.7.22.69

Class B

First digit: 1–126

First digit: 128–191

• cmu.edu: 128.2.11.43

Class C 21 8 110 network host

Classes D, E, F

Not commonly used

First digit: 192–223

IP Address Classes

Class	Count	Hosts
Α	2 ⁷ -2 = 126	2 ²⁴ -2 = 16,777,214
В	2 ¹⁴ = 16,398	$2^{16}-2 = 65,534$
С	2 ²¹ = 2,097,512	2 ⁸ -2 = 254
Total	2,114,036	

Partitioning too Coarse

- Not enough big (class A) addresses
- No organization needs 16.7 million hosts
 - Large organization likely to be geographically distributed
- Many organizations must make do with multiple class C's

Too many different Network IDs

Routing tables must still have 2.1 million entries

Improving the Hierarchy

Basic Idea of Hierarchy is Good

 Organizations of different sizes can be assigned different numbers of IP addresses

Shortcomings of Class-Based Addressing

- Class A too coarse; Class C too fine; not enough Class B's
- When fully deployed would have too many entries in routing table (2.1 million)

Solution

• Hierarchy with finer gradation of network/host ID split

Classless Interdomain Routing

- CIDR, pronounced "cider"

Arbitrary Split Between Network & Host IDs

Specify either by mask or prefix length

111111111111110000000000000000000000

|--|

- E.g., CMU can be specified as
 - 128.2.0.0 with netmask 255.255.0.0
 - 128.2.0.0/16

Aggregation with CIDR

- Original Use: Aggregate Class C Addresses
- One organization assigned contiguous range of class C's
 - e.g., Microsoft given all addresses 207.46.192.X --207.46.255.X
 - Specify as CIDR address 207.46.192.0/18

Routing Table Entry Examples

Snapshot From MAE-West Routing Table

Address	Prefix Length	Third Byte	Byte Range
207.46.0.0	19	000xxxxx ₂	0 – 31
207.46.32.0	19	001xxxxx ₂	32 - 63
207.46.64.0	19	010xxxxx ₂	64 – 95
207.46.128.0	18	10xxxxxx ₂	128 – 191
207.46.192.0	18	11xxxxxx ₂	192 – 255

microsoft.com: 207.46.245.214 & 207.46.245.222

Note hole in table: Nothing covers bytes 96 – 127

Hui Zhang

Splitting with CIDR

• Expose subnetting structure to external routers

Example

- Class A address 12.X.X.X has 413 entries in MAE-WEST table
- Prefix lengths 8--24
- attbi.com
 - Backbone services of AT&T
- Geographically distributed
 - Don't want all packets to concentrate to single region

Size of Complete Routing Table

- Shows that CIDR has kept # table entries in check
 - Currently require 124,894 entries for a complete table
 - Only required by backbone routers

Hui Zhang

IPv6 Addressing

- Main motivation for switch from IPv4
- Getting hard to manage 32-bit address allocation

* 128-Bit Addresses

- Standard unicast addresses 125 bits long (3-bit prefix)
- 4.2 x 10³⁷ nodes
- Earth radius is 6371 km
- Metric: $4.2 \times 10^{37} / [4 \pi (6.371 \times 10^8)^2] = 8 \times 10^{18} \text{ nodes } / \text{ cm}^2$

Name, Address, Route

First order approximation

Name tells who you are

– www.cnn.com

- Address tells where you are
 - 64.236.16.20
- Route tells how to get there
 - <prefix, nextHop>

Name, Address, Route

- * How many names each address can have?
- How many addresses each name can have?
- How many addresses each "node" can have?
- How many names each "node" can have?
- How many routes to each prefix?

Internet Structure

The Internet contains a large number of diverse networks Hui Zhang

Routing between ISPs

Routing protocol (BGP) contains reachability information (no metrics)

- Not about optimizing anything
- All about policy (business and politics)

Why?

- Metrics optimize for a particular criteria
- AT&T's idea of a good route is not the same as UUnet's
- Scale

Autonomous Systems (AS)

Internet is not a single network!

 The Internet is a collection of networks, each controlled by different administrations

An autonomous system (AS) is a network under a single administrative control

Implications

ASs want to choose own local routing algorithm

- AS takes care of getting packets to/from their own hosts
- Interdomain routing and Intradomain routing

***** ASs want to choose own nonlocal routing policy

- Interdomain routing must accommodate this
- BGP is the current interdomain routing protocol

Intradomain And Interdomain

AS Numbers (ASNs)

ASNs are 16 bit values. 64512 through 65535 are "private" Currently over 11,000 in use.

- Genuity: 1
- CMU: 9
- Harvard: 11
- UC San Diego: 7377
- AT&T: 7018, 6341, 5074, ...
- UUNET: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...
- •

Nontransit vs. Transit ASes **Internet Service** ISP 2 providers (often) ISP 1 have transit networks NET A Nontransit AS **Traffic NEVER** might be a corporate flows from ISP 1 or campus network. through NET A to ISP 2 Could be a "content (At least not intentionally!) provider"

Selective Transit

Most transit networks transit in a selective manner...

Hui Zhang

Customers and Providers

Customer pays provider for access to the Internet

Customers Don't Always Need BGP

Static routing is the most common way of connecting an autonomous routing domain to the Internet. This helps explain why BGP is a mystery to many ...

Customer-Provider Hierarchy

The Peering Relationship

Hui Zhang

Peering also allows connectivity between the customers of "Tier 1" providers.

Peering Wars

Peer

- Reduces upstream transit costs
- Can increase end-to-end performance
- May be the only way to connect your customers to some part of the Internet ("Tier 1")

Don't Peer

- You would rather have customers
- Peers are usually your competition
- Peering relationships may require periodic renegotiation

Peering struggles are by far the most contentious issues in the ISP world!

Peering agreements are often confidential.

Border Gateway Protocol

- Two types of routers
 - Border router, Internal router

Purpose of BGP

Share connectivity information across ASes

Hui Zhang

Multiple Routing Processes on a Single Router

Example of Advertising Route

Every time a route announcement crosses an AS boundary, the Next Hop attribute is changed to the IP address of the border router that announced the route.

Join EGP with IGP For Connectivity

I-BGP and E-BGP

iBGP Peers Must be Fully Meshed

iBGP neighbors do not announce routes received via iBGP to other iBGP neighbors. Injecting external routes into IGP does not scale and causes BGP policy information to be lost

- BGP does not provide "shortest path" routing
- Is iBGP an IGP?
 NO!

Path Vector Protocol

Distance vector algorithm with extra information

- For each route, store the complete path (ASs)
- No extra computation, just extra storage

Advantages:

- can make policy choices based on set of ASs in path
- can easily avoid loops

Hui Zhang