
Distance-Vector Routing
Sept. 29, 2004

TopicsTopics
� Routing task
� Conceptual algorithm
� Realities
� RIP protocol

SlidesSlides
� Hui Zhang, Randy Bryant, Dave Eckhardt

L09a_DV

15-441
Computer Networking

– 2 – 15-441

Router Operation

When Packet Arrives at RouterWhen Packet Arrives at Router
� Examine header to determine intended destination
� Look up in table to determine next hop in path
� Send packet out appropriate port

TerminologyTerminology
� Each router forwards packet to next router
� Overall goal is to route packet from source to destination

Today’s taskToday’s task
� How to generate the routing table

Router

– 3 – 15-441

Graph Model

� Represent each router as node
� Direct link between routers represented by edge

� Symmetric links ⇒ undirected graph

� Edge “cost” c(x,y) denotes measure of difficulty of using link

TaskTask
� Determine least cost path from every node to every other node

� Path cost d(x,y) = sum of link costs

A

E

F

C

D

B

2

3

6

4

1

1

1

3

– 4 – 15-441

Routes from Node A

PropertiesProperties
� Some set of shortest paths forms tree

� (why is it a tree?)
� “Shortest path spanning tree”

� Solution not unique
� E.g., A-B-D, A-E-F-C-D both have cost 7

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

AA00AA

BB44BB

EE66CC

BB77DD

EE22EE

EE55FF

Next Next
HopHop

CostCostDestDest

– 5 – 15-441

Will Packets Follow Computed
Route?

Intended RouteIntended Route
� A-B-D
� First hop B

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

AA00AA

BB44BB

EE66CC

BB77DD

EE22EE

EE55FF

Next Next
HopHop

CostCostDestDest

– 6 – 15-441

Will Packets Follow Computed
Routes?

Intended RouteIntended Route
� A-B-D
� First hop B

Actual RouteActual Route
� A-B-F-C-D
� B has different version of best path to D

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for B

AA44AA

BB00BB

FF22CC

FF33DD

FF44EE

FF11FF

Next Next
HopHop

CostCostDestDest

Table for A

AA00AA

BB44BB

EE66CC

BB77DD

EE22EE

EE55FF

Next Next
HopHop

CostCostDestDest

– 7 – 15-441

Things to Think About

GivenGiven
� Each entry in each table specifies next hop along SOME

shortest path

ConcernsConcerns
� Could a packet get stuck in a loop?

� What conditions would prevent this?
� Will a packet follow a shortest path?

– 8 – 15-441

Ways to Compute Shortest Paths
CentralizedCentralized

� Collect graph structure in one place
� Use standard graph algorithm
� Disseminate routing tables

Partially DistributedPartially Distributed
� Every node collects complete graph structure
� Each computes shortest paths from it
� Each generates own forwarding table
� “Link-state” algorithm

Fully DistributedFully Distributed
� No one has copy of graph
� Nodes construct their own tables iteratively
� Each sends information about its table (vs. graph) to neighbors
� “Distance-Vector” algorithm

– 9 – 15-441

Distance-Vector Method

IdeaIdea
� At any time, have (cost,next-hop) of best known path to

destination
� Use cost ∞ when no path known

InitiallyInitially
� Have entries only for directly connected nodes

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Initial Table for A

AA00AA

BB44BB

––∞∞CC

––∞∞DD

EE22EE

FF66FF

Next Next
HopHop

CostCostDestDest

– 10 – 15-441

Distance-Vector Update

Update(router=x, dest=y, peer=z)Update(router=x, dest=y, peer=z)
� d ← c(x,z) + d(z,y) # Cost of path from x to y with first hop z

� if d < d(x,y)
Found better path

return d,z # Updated cost / next hop

� else
return d(x,y), nexthop(x,y) # Existing (cost, next hop)

x

z

y

c(x,z)

d(z,y)

d(x,y)

– 11 – 15-441

Synchronous Version
� Bellman-Ford algorithm

RepeatRepeat
For every hop z

For every source x

For every destination y

d′(x,y) ← Update(x,y,z)

For all x,y: d(x,y) ← d′(x,y)

Until ConvergeUntil Converge
� What is maximum number of iterations?

– 12 – 15-441

Synchronous Start

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

AA00AA

BB44BB

––∞∞CC

––∞∞DD

EE22EE

FF66FF

HopHopCstCstDstDst

Table for B

AA44AA

BB00BB

––∞∞CC

DD33DD

––∞∞EE

FF11FF

HopHopCstCstDstDst

Table for C

––∞∞AA

––∞∞BB

CC00CC

DD11DD

––∞∞EE

FF11FF

HopHopCstCstDstDst

Table for D

––∞∞AA

BB33BB

CC11CC

DD00DD

––∞∞EE

––∞∞FF

HopHopCstCstDstDst

Table for E

AA22AA

––∞∞BB

––∞∞CC

––∞∞DD

EE00EE

FF33FF

HopHopCstCstDstDst

Table for F

AA66AA

BB11BB

CC11CC

––∞∞DD

EE33EE

FF00FF

HopHopCstCstDstDst

Optimum 1-hop paths

– 13 – 15-441

Synchronous Iteration #1

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

AA00AA

BB44BB

FF77CC

BB77DD

EE22EE

EE55FF

HopHopCstCstDstDst

Table for B

AA44AA

BB00BB

FF22CC

DD33DD

FF44EE

FF11FF

HopHopCstCstDstDst

Table for C

FF77AA

FF22BB

CC00CC

DD11DD

FF44EE

FF11FF

HopHopCstCstDstDst

Table for D

BB77AA

BB33BB

CC11CC

DD00DD

––∞∞EE

CC22FF

HopHopCstCstDstDst

Table for E

AA22AA

FF44BB

FF44CC

––∞∞DD

EE00EE

FF33FF

HopHopCstCstDstDst

Table for F

BB55AA

BB11BB

CC11CC

CC22DD

EE33EE

FF00FF

HopHopCstCstDstDst

Optimum 2-hop paths

– 14 – 15-441

Synchronous Iteration #2

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

AA00AA

BB44BB

EE66CC

BB77DD

EE22EE

EE55FF

HopHopCstCstDstDst

Table for B

AA44AA

BB00BB

FF22CC

DD33DD

FF44EE

FF11FF

HopHopCstCstDstDst

Table for C

FF66AA

FF22BB

CC00CC

DD11DD

FF44EE

FF11FF

HopHopCstCstDstDst

Table for D

BB77AA

BB33BB

CC11CC

DD00DD

CC55EE

CC22FF

HopHopCstCstDstDst

Table for E

AA22AA

FF44BB

FF44CC

FF55DD

EE00EE

FF33FF

HopHopCstCstDstDst

Table for F

BB55AA

BB11BB

CC11CC

CC22DD

EE33EE

FF00FF

HopHopCstCstDstDst

Optimum 3-hop paths

– 15 – 15-441

Asynchronous Version
� Can be performed without any centralized control

RepeatRepeat
Choose arbitary x, y, z

d(x,y) ← Update(x,y,z)

Until ConvergeUntil Converge

How to “choose arbitrarily”How to “choose arbitrarily”
When value of d(z,y) changes, send message to all neighbors

x

x

z

y

c(x,z)

d(z,y)

d(x,y)

Changed

Check

– 16 – 15-441

Convergence Properties

OrderingOrdering
� Let D denote values d(u,v) for all u & v
� Say D′ ≤ D when d ′(u,v) ≤ d(u,v) for all u & v

Effect of Any Updating StepEffect of Any Updating Step
� Describe as D ′ ← Update(D,x,y,z)
� Gives new values D ′ such that D ′ ≤ D

� “Monotonic”
� Values cannot go below 0

ImplicationsImplications
� Converges to unique “minimum fixed point” cost matrix D*

� “Fixed point” means D* = Update(D*,x,y,z) for all x, y, & z
� Tarski Fixed Point Theorem
� (Multiple path-sets can have same minimal-cost D*)

– 17 – 15-441

Convergence Properties

NoteNote
� Convergence proof is for static topology

� No new nodes
� No link-cost changes
� No node failures

– 18 – 15-441

Asynchronous = Unpredictable

A E

L

C DB

Consider A-F pathsConsider A-F paths

Two ways for A-F path to convergeTwo ways for A-F path to converge
� E tells D, D tells C, C tells B, B tells A; then L tells A, C

� C learns C-D-E-F before learning C-L-F
� A learns A-B-C-D-E-F before learning A-L-F

� L tells A,C “right away”
� A, C learn optimal route immediately

F

– 19 – 15-441

What if Node Fails?
� What if C crashes?
� F & D will stop

receiving updates
� F & D will declare

their links to C
“down”

� B will learn “later”

F

C

D

B

1

1

1

3

Table for D

CC22CC

HopHopCstCstDstDst

Table for F

CC22CC

HopHopCstCstDstDst

11

11

Table for B

FF22CC

HopHopCstCstDstDst

– 20 – 15-441

Link Failure
� Set entries to ∞
� Iterate

F

C

D

B

1

1

1

3

Table for D

––∞∞CC

HopHopCstCstDstDst

Table for F

––∞∞CC

HopHopCstCstDstDst

∞∞

∞∞

– 21 – 15-441

Failing Node Iterations
� Stale entry in B

propagates to D & F

What Happened?What Happened?
� Algorithm converges
� Can get wrong values

Table for B

FF22CC

HopHopCstCstDstDst

F

C

D

B

1

1

1

3

Table for D

BB55CC

HopHopCstCstDstDst

Table for F

BB33CC

HopHopCstCstDstDst

∞∞

∞∞

Table for D

––∞∞CC

HopHopCstCstDstDst

Table for F

––∞∞CC

HopHopCstCstDstDst

Better
Route

Better
Route

– 22 – 15-441

Revised Update Rule #1

UpdateUpdate (router=x, dest=y, peer=z)(router=x, dest=y, peer=z)
� d ← c(x,z) + d(z,y) # Cost of path from x to y with first hop z

� if d < d(x,y) & x ≠ nexthop(z,y)
Found better path

return d,z
� else

return d(x,y), nexthop(x,y)

x
y

c(x,z)

d(z,y)

d(x,y)

z

F

C

B
z

x

y
Creating circular path

Sometimes called “Split Horizon Rule”

– 23 – 15-441

Iterations with Revision #2
� Stale entry in B still

propagates

What Happened?What Happened?
� Algorithm converges

� Tarski’s theorem
� Can get wrong values

No
Change

F

C

D

B

1

1

1

3

∞∞

∞∞

Table for B

FF22CC

HopHopCstCstDstDst

Table for D

BB55CC

HopHopCstCstDstDst

Table for D

––∞∞CC

HopHopCstCstDstDst

Table for F

––∞∞CC

HopHopCstCstDstDst

Better
Route

– 24 – 15-441

Revised Update Rule #2

UpdateUpdate (router=x, dest=y, peer=z)(router=x, dest=y, peer=z)
� d ← c(x,z) + d(z,y) # Cost of path from x to y with first hop z

� if nexthop(x,y) = z || # Forced update, regardless of cost

(d < d(x,y) & x ≠ nexthop(z,y))
Forced update or found better path

return d,z
� else

return d(x,y), nexthop(x,y)

x
y

c(x,z)

d(z,y)

d(x,y)

z

Already linked through z

– 25 – 15-441

Iterations with Revision #2

� Forced updates will
eliminate false entries

Scary FeatureScary Feature
� Forced update rule

violates monotonicity
� Increases d(x,y)

Forced
Update

F

C

D

B

1

1

1

3
Table for B

––∞∞CC

HopHopCstCstDstDst

∞∞

∞∞
No

Change

Table for B

FF22CC

HopHopCstCstDstDst

Table for D

BB55CC

HopHopCstCstDstDst

Table for D

––∞∞CC

HopHopCstCstDstDst

Table for F

––∞∞CC

HopHopCstCstDstDst

Better
Route

Table for D

––∞∞CC

HopHopCstCstDstDstForced
Update

– 26 – 15-441

Convergence
Problems

� Iterations don’t converge
� “Count to infinity”

SolutionSolution
� Make “infinity” smaller
� What is upper bound on

maximum path length?

Table for A

FF77CC

HopHopCstCstDstDst

Table for B

AA88CC

HopHopCstCstDstDst

Table for F

CC11CC

HopHopCstCstDstDst

Table for F

––∞∞CC

HopHopCstCstDstDst

Table for A

––∞∞CC

HopHopCstCstDstDst Forced
Update

Table for B

AA1414CC

HopHopCstCstDstDst
Forced
Update

F C
6

1

1

1

B
D

A

4

∞∞

Table for D

BB99CC

HopHopCstCstDstDst

Forced
Update

Table for A

DD1313CC

HopHopCstCstDstDst Better
Route

Table for D

BB1515CC

HopHopCstCstDstDst

Table for A

DD1919CC

HopHopCstCstDstDst Forced
Update

•
•
•

Forced
Update

– 27 – 15-441

Routing Information Protocol (RIP)
� Earliest IP routing protocol (1982 BSD)

� Ideas in first Arpanet protocols (late 60’s)
� Current standard is version 2 (RFC 2453)

FeaturesFeatures
� Every link has cost 1
� “Infinity” = 16

� Limits to networks where everything reachable within 15 hops
� Appropriate for “campus” networks

Sending UpdatesSending Updates
� Every router listens for updates on UDP port 520
� RIP message can contain entries for up to 25 table entries

– 28 – 15-441

RIP Updates

InitialInitial
� When router first starts, asks for copy of table for every

neighbor
� Uses it to iteratively generate own table

PeriodicPeriodic
� Every 30 seconds, router sends copy of its table to each

neighbor
� Neighbors use to iteratively update their tables

TriggeredTriggered
� When every entry changes, send copy of entry to neighbors

� Except for one causing update (split horizon rule)
� Neighbors use to update their tables

– 29 – 15-441

RIP Staleness / Oscillation Control

“Count to infinity”“Count to infinity”
� ...quick “for small values of infinity”

Route TimerRoute Timer
� Every route has timeout limit of 180 seconds

� Reached when haven’t received update from next hop for 6
periods

� If not updated, set to infinity

BehaviorBehavior
� When router or link fails, can take minutes to stabilize
� Lots of subtlety to get good implementation (see RFCs).

– 30 – 15-441

Features of Distributed Algorithms

Desirable in Network SettingDesirable in Network Setting
� Every node operates in purely local way

� No central control or global synchronization
� Only communication between direct neighbors

Not Difficult to Handle Static SystemNot Difficult to Handle Static System
� Monotonicity guarantees convergence

Difficult in Dynamically-Changing SystemDifficult in Dynamically-Changing System
� Anything that reduces link cost OK

� Iterations will converge to reflect reduced costs
� Anything that increases link cost problematic

� Iterations will converge, but possibly to wrong values
� Changing update rule can lead to convergence problems

» Violate monotonicity

