15-441

Computer Networking

UDP & TCP:
Transport Protocols
Oct. 27, 2004

Topics
* What's a Transport Protocol?

* |Internet architectural history reminder
- TCP/UDP split

* UDP and applications
* TCP overview

Slides — Randy Bryant, Hui Zhang, Dave Eckhardt
L17_UDPTCP




Readings

Section 2.5
* “Reliable Transmission”
- Issues, stop&wait, sliding window

Chapter 5
* 5,1 UDP,5.2TCP
* 5.3 (RPC) will be addressed later (though reading early is ok)
* 5.4 (Performance) shouldn't be too painful

_2- 15-441




Architectural Reminder

CerfKahn74
* A Protocol for Packet Network Intercommunication
* Lays out fundamental Internet architectural assumptions
* Subnets will vary in terms of addressing, size, protocol
* Application protocols will be end-to-end
- All hosts will speak same application protocols

File-format translation as part of one file-transfer
protocol
No “file translation gateways” at campus boundaries

“One protocol to bind them” - IP

Particular “division of labor”
Error control is a host matter
Fragmentation compromise — changed by IPv6

~3- 15-441




CerfKahn74 vs. IPv4

Addresses are larger
* Paper
- 8 network bits
- “seems sufficient for the forseeable future”

- 16 host bits
- “seems more than sufficient for any given network”
* |Pv4 — 32 bits

* IPv6 128 bits
- “Often” 64 network bits, 64 host bits (MAC address)

4 15-441




CerfKahn74 vs. IPv4

Layering split
* Paper presented “Transmission Control Program” protocol
- One reliable in-order message-stream protocol
- One header, so routers understood everything
* Paper's TCP split into
IP — host addressing, data delivery
- TCP —reliable in-order byte-stream protocol
- (note: “message-stream” got lost)
- UDP - unreliable un-ordered packet protocol

—5- 15-441




Internet Protocol (IP)

Network applications {ema" O [Pl
\SMTP HTTP RTP...

Network technology

IP Delivery Model Steve Deerlng

* Connectionless datagram
Each packet independent entity
Each packet contains source & destination address

* Best effort service
Packets may be dropped, duplicated, delivered out of order
No performance guarantee

, CISCO

15-441




Transport Protocols

Lowest level end-to-end
protocol.

* Header generated by
sender is interpreted
only by the destination

* Routers view transport
header as part of the
payload

Adds functionality to the
best-effort packet delivery
IP service.

* Make up for the
“shortcomings” of the
core network

Transport

Datalink

Physical

—)

Transport

1 jhusmemd Physical

router




(Possible) Transport Protocol
Functions

Multiplexing/demultiplexing for multiple applications.
* “Port” abstraction abstracts OS notions of “process”

Connection establishment.
* Logical end-to-end connection
* Connection state to optimize performance

Error control.
* Hide unreliability of the network layer from applications

* Many types of errors: corruption, loss, duplication, reordering.

End-to-end flow control.
* Avoid flooding the receiver

Congestion control.
* Avoid flooding the network

15-441




User Datagram Protocol (UDP)

* Transforms IP's connectionless datagram into...
connectionless datagram!

Addressing used for (de)multiplexing.
* Port numbers = connection/application endpoint

End-to-end reliability via end-to-end checksum.

* Protects against data corruption errors between source and
destination (links, switches/routers, memory bus)

* Does not protect against packet loss, duplication or
reordering

* Checksum chosen to be efficient in software (vs. CRC)
- Optional in theory, but you'd better use it in practice

Dest. Port
Length D. Checksum

—9- 15-441




Two-Level Multiplexing

* How does the protocol stack know which application should
receive a particular packet?

Each IP datagram contains “protocol ID” (UDP, TCP, ...)

* Specifies transport protocol (kernel module) to get packet

Transport layer uses the “port” field of transport
header to identify the application socket.

* (Destination IP, destination port) mapped to socket
* Port numbers 0-1023 are “well-known” port numbers

UDP packets delivered to a socket can come from
various sources (connectionless)

* To reply, we swap source (IP,port) with destination (IP,port)

- 10— 15-441




Two-Level Multiplexing

0 4 8 12 16 19 24 28 31
Ve 1 Hien TOS Length
sion
Ident Flags Offset
TTL UDP =17 IP Header Checksum

Source Address

Destination Address

Options (if any)

UDP Source Port UDP Destination Port

UDP Data Length UDP Data Checksum

UDP Data Bytes

~11- 15-441




Uses of UDP

1. Original motivator

* Experimental packet-voice protocol doesn't want TCP
TCP “helpfully” imposes in-order delivery
- Audio-data packets have independent deadlines
Once packet #37 is late, it's late
Don't delay playing packet #38 until #37 is retransmitted

2. Architectural role

* Lab for experimental transport protocols
Getting a new IP-level protocol number requires results

* Use the port addressing provided by UDP

* Implement new & improved reliability, flow control, ordering,
congestion control

—12- 15-441




Uses of UDP

3. Request/Response for vital Internet protocols
* DNS, NTP, DHCP, Kerberos, AFS, Zephyr, TFTP, SNMP
* Remote procedure calls
* Distributed computing communication libraries

* Easy to overlook, but...
Internet depends on UDP-based infrastructure protocols

Why use UDP?
* TCP connection is impossible
* TCP connection is too expensive
* TCP connection expense is wasteful
* Communication pattern isn't point-to-point

- 13- 15-441




UDP Case Studies

DHCP - Dynamic Host Configuration Protocol

* TCP connection is impossible
- We don't have an IP address yet!

DNS — Domain Name System

* TCP connection is too expensive
- Everybody on the planet talks to root name servers
- That would be a lot of kernel socket buffers!

* TCP connection expense is wasteful
- TCP connection costs 5 packets (2 RTT) by itself
- DNS query/response needs only 2 packets, 1 RTT

NTP — Network Time Protocol

* Setting your clock requires estimating latency to peer

* TCP buffering interferes with estimation
- 14 - 15-441




UDP Case Studies

SNMP - Simple Network Management Protocol

* TCP connection is too expensive
- Workgroup router can't afford connection state...
...would be easy denial-of-service attack

Kerberos, Zephyr
* Like DNS: many clients, request/response pattern
* TCP connection is too expensive & wasteful

TFTP

* TCP implementation is too expensive
- Boot code in BIOS...size is limited

- 15— 15-441




UDP Case Studies

AFS - “Andrew File System” (or not)
* Counts as “experimental transport protocol”
* |n 1980's, many TCP implementations had poor throughput
* Easier to implement a similar protocol than to fix kernels
* Unclear what the “right” answer is

NFS - Sun's “Network File System”

* Similar reasons, judgement to AFS
* Lots of people run NFS over TCP

—16 —

15-441




UDP Case Studies

RPC (Remote Procedure Call) libraries
e SUunRPC, CORBA, DCOM, etc.
* Many operate over both UDP and TCP

* Application often selects via flag
- Application, not library, knows how many calls to same server

Special-purpose communications

* Examples
ISIS distributed-computation library
IP multicast

* Communication pattern isn't point-to-point

—17- 15-441




Byte Stream?

TCP provides a “reliable byte-stream connection”
* What's that?

—18 —

15-441




Byte Stream

TCP provides a “reliable byte-stream connection”

e Connection

Information is part of a “session” or “association” which lasts
for longer than a single packet

Bytes arrive “on a connection”, not “from the network”

* Byte-stream: write(server, “abc”, 3); write(server, “def”, 3);
Server will receive 'a’ before 'b', 'b' before 'c', ..., 'e' before 'f'
read(client, buf, 10) may receive

- “abc”, 3
- “abcdef”, 6
- fa’, 1

* Reliable
Even if network loses the “abc” packetthe 1 *'time (and 2 ™...)
Even if network delivers “def” packet before “abc” packet

- 19 - 15-441




Fatal Errors

TCP provides a “reliable byte-stream connection”

* Reliable
- Even if an asteroid lands on the server?
- Well, no.

How do TCP applications learn about “fatal errors”"?
* write(server, “query\n”, 6) 0O -1
* read(server, answerbuf, sizeof (answerbuf)) 0O -1
* errno says...

- ETIMEDOUT, ECONNRESET, ENETDOWN, EHOSTDOWN,

EHOSTUNREACH

How do UDP applications learn about “fatal errors™?
* maybe just silence!

* maybe read()/write() errors as with TCP (see “ICMP”)
—-20 -

15-441




Common Byte Stream Flows

Data Transfer

* Application wants to transfer
a lot of bytes from one
machine to another:

Mechanism
* Break into smaller segments

e Send in succession

—_
—_

—_
—_
—_—

* Reassemble at other end

— 21 —

Request/Response

* |[nteractive application
iInvolves exchange of short
messages between two
hosts

Mechanism

* Send each message as
separate packet

15-441




TCP's Jobs

Reliable bi-directional byte stream

Connections established & torn down
Multiplexing/ demultiplexing

Error control

End-end flow control

Congestion avoidance

—_22_

15-441




TCP's Jobs — In 20 bytes...

Reliable bi-directional byte stream

Connections established & torn down
* Analogy: setting up & terminating phone

call
Dest. Port
Multiplexing/ demultiplexing Data Sequence #
* Ports at both ends Acknowledgment Sequence #
Error control HL/Flags
* Users see correct, ordered byte D. Checksum Urgent Pointer

End-end flow control

* Avoid overwhelming machines at each
end

Congestion avoidance

* Avoid creating traffic jams within network
23 — 15-441




Connection Life Cycle

Choosing ports
Establishing connection
Transmitting data

Tearing down connection

—24 —

15-441




Choosing Ports

“Well-known ports” used for many applications

* Mall servers listen on
- Port 25 — SMTP (Simple Mail Transfer Protocol)
- Port 110 — POP3 (Post Office Protocol, v3)
- Port 143 — IMAP (Internet Mail Access Protocol)

e See “/letc/services” on a Unix machine

Random port numbers used by “clients”

* |f you don't bind() before you connect(), kernel gives you
one

TCP connection defined by 4-tuple

* (IP1, Portl, IP2, Port2)
(pa-mtlebanon3a-39.pit.adelphia.net, 4093,
piper.nectar.cs.cmu.edu, 22)

—25_

15-441




Establishing Connection

SYN: SeqC
Client \> Server

ACK: SeqC+1

SYN: SeqS

ACK: SeqS+1

\>

Three-Way Handshake

* Each side notifies other of starting sequence number it will
use for sending

* Each side acknowledges other's sequence number
- SYN-ACK: Acknowledge sequence number + 1

* Can “piggy-back” second SYN with first ACK

— 26— 15-441




Transmitting Data

Both sides may send data
* Really two byte streams

“Free-form” acks
* Need not Ack every Data
* Sometimes Ack repeatedly

* Complicated!!
- Not for today

_27 —

A B
Data
ACK —
Data
‘T ACK
Data —p
Data
ACK q‘

15-441




Tearing Down Connection

Either side can initiate teardown A
FIN, SeqA

* Send FIN signal \
* “I'm FINished sending”
Other side typically agrees

* >>>QUIT

FIN, SegB
* <<< 220 Goodbhye /
e Both sides FIN W.

* Kernels sort things out

—_ 28—

B

15-441




Byte Counting

TCP sequence numbers count
bytes, not packets

Good news
* More-efficient retransmissions

Bad news

* More-complicated receiver
processing
Must deliver each byte to user
exactly once!

* Similar to IP fragment
reassembly

—29_

B
abc
ACK —
k
abcdef
—
ACK

15-441




To Nagle or not to Nagle?

Problem (Nagle, RFC 896, 1984)

* Sending a TCP packet when a user types one character
considered harmful

* 1 byte of data, 40 bytes of header...4000% overhead

* Cost of processing a packet at a router has large fixed
component

* Already-busy network may be driven to “congestion
collapse”

Approach
* write() shouldn't always result in sending a packet
* Sometimes TCP sender should buffer data w/o sending
* Old solution: buffer for some amount of time (e.g., 200 ms)
* Problem: hard to set the threshold one way for everybody

~ 30— 15-441




To Nagle or not to Nagle?

Suggestion (Nagle, RFC 896, 1984)

* When new bytes arrive from user program, examine TCP
transmit status

* |f you are still waiting for an Ack for some data, buffer the
bytes, send the next time you send something anyway
* Typically on receipt of an Ack

* Otherwise, connection was idle, may as well send

Results
* Dramatic decrease in number of tiny packets
* Annoying for some borderline connection latencies

Who cares?
* Easy to do with byte-oriented protocol, hard if packet-based

-31- 15-441




Summary

What's a Transport Protocol?

* |nternet architectural history reminder
- TCP/UDP split

* UDP and applications
* TCP overview

-32 - 15-441




