
TCP Connection Management,
Error Control
Nov. 1, 2004

Slides – Randy Bryant, Hui Zhang, Ion Stoica, Dave
Eckhardt

L18_TCP

15-441
Computer Networking

– 2 – 15-441

(Possible) Transport Protocol
Functions
Multiplexing/demultiplexing for multiple applications.Multiplexing/demultiplexing for multiple applications.

� “Port” abstraction abstracts OS notions of “process”

Connection establishment.Connection establishment.
� Logical end-to-end connection
� Connection state to optimize performance

Error control.Error control.
� Hide unreliability of the network layer from applications
� Many types of errors: corruption, loss, duplication, reordering.

End-to-end flow control.End-to-end flow control.
� Avoid flooding the receiver

Congestion control.Congestion control.
� Avoid flooding the network

– 3 – 15-441

Outline
Connection managementConnection management

� What's a connection?
� How do we get one?
� Why so complicated?

� Threats

Error control, Flow controlError control, Flow control
� Stop & Wait vs. sliding window (conceptual and TCP)
� Ack flavors, windows, timeouts, sequence numbers

Next Lecture – Dave Maltz. MobilityNext Lecture – Dave Maltz. Mobility

Monday – TCP againMonday – TCP again
� Congestion control – you will not address in Project 3

– 4 – 15-441

Transmission Control Protocol
(TCP)
Reliable bi-directional byte streamReliable bi-directional byte stream

Connections established & torn downConnections established & torn down
� Analogy: setting up & terminating phone

call

Multiplexing/ demultiplexingMultiplexing/ demultiplexing
� Ports at both ends

Error controlError control
� Users see correct, ordered byte

sequences

End-end flow controlEnd-end flow control
� Avoid overwhelming machines at each

end

Congestion avoidanceCongestion avoidance
� Avoid creating traffic jams within network

Source Port Dest. Port

Data Sequence #

Acknowledgment Sequence #

HL/Flags Window

D. Checksum Urgent Pointer

Options..

– 5 – 15-441

TCP Flags

SYN: SynchronizeSYN: Synchronize
� Used when setting up connection

FIN: FinishFIN: Finish
� Used when tearing down connection

RESETRESET
� I'm lost. Need to abort connection

PUSHPUSH
� Signal the receiving application that data is ready

URG: UrgentURG: Urgent
� Segment includes “urgent” data

ACKACK
� Acknowledging received data

– 6 – 15-441

Establishing Connection

Three-Way HandshakeThree-Way Handshake
� Each side notifies other of starting sequence number it will

use for sending
� Each side acknowledges other's sequence number

� SYN-ACK: Acknowledge sequence number + 1
� Can combine second SYN with first ACK

SYN: SeqC

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

Client Server

– 7 – 15-441

TCP Session Example

Use windump to trace typical TCP sessionUse windump to trace typical TCP session

ClientClient
� 128.2.222.198:3123
� Randy Bryant's laptop BRYANT-TP2.VLSI using ephemeral

port

ServerServer
� 192.216.219.96:80
� Web server at ceiva.com

TaskTask
� Upload digital image to server

– 8 – 15-441

TCP Connection Setup Example

Client SYNClient SYN
� SeqC: Seq. #4019802004, window 65535, max. seg. 1260

Server SYN-ACK+SYNServer SYN-ACK+SYN
� Receive: #4019802005 (= SeqC+1)
� SeqS: Seq. #3428951569, window 5840, max. seg. 1460

Client SYN-ACKClient SYN-ACK
� Receive: #3428951570 (= SeqS+1)

09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80: S
 4019802004:4019802004(0) win 65535 <mss 1260,nop,nop,sackOK> (DF)

09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123: S
 3428951569:3428951569(0) ack 4019802005 win 5840 <mss
1460,nop,nop,sackOK> (DF)

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80: . ack
 3428951570 win 65535 (DF)

– 9 – 15-441

Sequence: ≥ 3428951569
Window: 65535
Max. Segment: 1260

Connection Created
Client

128.2.222.198:3123
Server

192.216.219.96:80

Sequence: ≥ 4019802004
Window: 5840
Max. Segment: 1460

Sequence:
Window:
Max. Segment:

Sequence:
Window:
Max. Segment:

– 10 – 15-441

TCP State Diagram: Connection
Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
create TCB
Snd SYN

create TCB

passive OPEN

delete TCB
CLOSE

delete TCB
CLOSE

snd SYN
SEND

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK

Rcv SYN, ACK

rcv SYN
snd ACK

Client

Server

– 11 – 15-441

Handshake – Why So Complicated?

Both sides specify a 32-bit sequence numberBoth sides specify a 32-bit sequence number
� Why can't they just both start with zero?

Recall IP's TTL fieldRecall IP's TTL field
� TTL Max = 255
� Originally expected to be 255 seconds !
� Reinterpreted to be 255 hops
� What happens if a really old packet arrives?

� Old connection: IP 1, Port 1, IP2, Port 2, [Seq1], [Seq 2]
� Which of those will be the same for a new connection?
� Can you guess how sequence numbers should be chosen?

– 12 – 15-441

Error Control – Threats

Network may corrupt framesNetwork may corrupt frames
� Despite link-level checksum
� Despite switch/router memory ECC
� Example

� Store packet headers in separate memory from packet bodies
� Maintain association between header #343 and body #343

� Most of the time...

Packet-sequencing issuesPacket-sequencing issues
� Network may duplicate packets (really?)
� Network may re-order packets (why?)
� Network may lose packets (often, actually)

– 13 – 15-441

Error Control

Add end-to-end checksum to TCP segmentsAdd end-to-end checksum to TCP segments

Packet sequencing problems: per-segment sequence #Packet sequencing problems: per-segment sequence #
� Duplicate: ignore
� Reordered: reorder or drop
� Lost: retransmit

Lost segments detected by sender.Lost segments detected by sender.
� Receiver won't ACK a lost segment
� Use timeout to detect lack of acknowledgment
� Need estimate of the roundtrip time to set timeout

Retransmission requires sender to keep copy of data.Retransmission requires sender to keep copy of data.
� Copy is discarded when ACK is received

– 14 – 15-441

Error Control Algorithms

Use two basic techniques: Use two basic techniques:
� Acknowledgements (ACKs)
� Timeouts

Two examples:Two examples:
� Stop-and-wait
� Sliding window

– 15 – 15-441

Stop-and-Wait

Receiver: send an acknowledge (ACK) back to the sender Receiver: send an acknowledge (ACK) back to the sender
upon receiving a packet (frame)upon receiving a packet (frame)

Sender: excepting first packet, send a packet only upon Sender: excepting first packet, send a packet only upon
receiving the ACK for the previous packetreceiving the ACK for the previous packet

T
im

e

Sender Receiver
frame

frame

ACK

ACK

– 16 – 15-441

What Can Go Wrong?

Sender Receiver
frame

frame

ACK

T
im

eo
ut

Frame lost - resend it
on Timeout

Sender Receiver
frame

frame

ACK

ACK

T
im

eo
ut

ACK lost - resend packet

Need a mechanism to
detect duplicate packet

Sender Receiver
frame

frame

ACK

ACKT
im

eo
ut

ACK delayed – resend packet

Need a way to differentiate
between ACK for current
and previous packet – one bit
often enough

– 17 – 15-441

Stop-and-Wait Disadvantage

May lead to inefficient link utilizationMay lead to inefficient link utilization

ExampleExample
� One-way propagation = 15 ms
� Bandwidth = 100 Mbps
� Packet size = 1000 bytes: transmit = (8*1000)/10 8 = 0.08ms
� Neglect queue delay: Latency = approx. 15 ms; RTT = 30 ms

Propagation = 15 ms

Bandwidth = 100 Mbps

– 18 – 15-441

Stop-and-Wait Disadvantage (cont’d)

Send a message every 30 msSend a message every 30 ms
� Throughput = (8*1000)/0.03 = 0.2666 Mbps

Thus, the protocol uses less than 0.3% of the link Thus, the protocol uses less than 0.3% of the link
capacity!capacity! Sender Receiver

frame

frame

ACK

ACK

30
 m

s
30

 m
s

– 19 – 15-441

Solution

Don’t wait for the ACK of the previous packet before Don’t wait for the ACK of the previous packet before
sending the next packet!sending the next packet!

– 20 – 15-441

Sliding Window Protocol: Sender

Each packet has a sequence numberEach packet has a sequence number
� Assume infinite sequence numbers for simplicity

Sender maintains a window of sequence numbersSender maintains a window of sequence numbers
� SWS (sender window size) – maximum number of

packets that can be sent without receiving an ACK
� LAR (last ACK received)
� LFS (last frame sent)

seq. numbersLAR LFS

Acknowledged packets Packets not acknowledged yet

– 21 – 15-441

Example

Assume SWS = 3Assume SWS = 3 Sender Receiver

frame 1
1

frame 2
frame 3

2 31

ACK 1
2 31

frame 4
2 3 41 ACK 2

frame 5
2 3 4 51

Note: usually ACK contains the sequence number of the first packet in
sequence expected by receiver

21

– 22 – 15-441

Need for Receiver Window

Time

Window size = 3 packets

Sender Receiver

1
2
3

4
5
6

7

Timeout
Packet 5

5
6
7

Packets
Still
Arriving

– 23 – 15-441

Sliding Window Protocol: Receiver

Receiver maintains a window of sequence numbersReceiver maintains a window of sequence numbers
� RWS (receiver window size) – maximum number of out-

of-sequence packets that can received
� LFR (last frame received) – last frame received in

sequence
� LAF (last acceptable frame)
� LAF – LFR <= RWS

– 24 – 15-441

Sliding Window Protocol: Receiver

Let seqNum be the sequence number of arriving packetLet seqNum be the sequence number of arriving packet

If (seqNum <= LFR) or (seqNum >= LAF)If (seqNum <= LFR) or (seqNum >= LAF)
� Discard packet

Else Else
� Accept packet
� ACK largest sequence number seqNumToAck, such that all

packets with sequence numbers <= seqNumToAck were received

seq. numbersLFR LAF

Packets in sequence Packets out-of-sequence

– 29 – 15-441

Choices of Ack

Cumulative ackCumulative ack
� I have received 17..23
� I have [still] received 17..23

Selective ackSelective ack
� I received 17-23, 25-27

Negative ackNegative ack
� I think I'm missing 24...

Tradeoffs?Tradeoffs?

– 30 – 15-441

Choosing Window Size

Sender

Receiver
Time

Max Throughput =
Window Size

Roundtrip Time

RTT

– 31 – 15-441

Timeout Value Selection

Long timeout? Long timeout?

Short timeout?Short timeout?

Solution? Solution?

– 32 – 15-441

Setting Retransmission Timeout
(RTO)

� Time between sending & resending segment

ChallengeChallenge
� Too long: Add latency to communication when packets

dropped
� Too short: Send too many duplicate packets
� General principle: Must be > 1 Round Trip Time (RTT)

Initial Send

Retry

Ack

RTO

Initial Send

Retry
Ack

RTO

Detect dropped packet RTO too short

– 33 – 15-441

Round-trip Time Estimation

Every Data/Ack pair gives new RTT estimateEvery Data/Ack pair gives new RTT estimate

Can Get Lots of Short-Term FluctuationsCan Get Lots of Short-Term Fluctuations

Data

AckSample

– 34 – 15-441

Original TCP Round-trip Estimator

Round trip times exponentially averaged:Round trip times exponentially averaged:
� New RTT = α (old RTT) + (1 - α) (new sample)
� Recommended value for α: 0.8 - 0.9

� 0.875 for most TCP's

Retransmit timer set to Retransmit timer set to ββ RTT, where RTT, where ββ = 2 = 2
� Want to be somewhat conservative about retransmitting

0

0.5

1

1.5

2

2.5

– 35 – 15-441

RTT Sample Ambiguity

Karn/Partridge AlgorithmKarn/Partridge Algorithm
� Ignore sample for segment that has been retransmitted
� Use exponential backoff for retransmissions

� Each time retransmit same segment, double the RTO
� Based upon premise that major congestion is causing packet

losses

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B
Original transmission

retransmission
Sample
RTT

ACKRTO
X

– 36 – 15-441

Sequence Number Space

Each byte in byte stream is numbered.Each byte in byte stream is numbered.
� 32 bit value
� Wraps around
� Initial values selected at start up time

TCP breaks up the byte stream in packets (“segments”)TCP breaks up the byte stream in packets (“segments”)
� Packet size is limited to the Maximum Segment Size

Each segment has a sequence number.Each segment has a sequence number.
� Indicates where it fits in the byte stream

segment 8 segment 9 segment 10

13450 14950 16050 17550

– 37 – 15-441

Finite Length
Sequence Number

Sequence number can wrap aroundSequence number can wrap around
� What is the problem?
� What is the solution?

� Hint: not “crash the kernel”
� Not even “crash the connection” or “connection full”

– 38 – 15-441

Sequence Numbers

32 Bits, Unsigned32 Bits, Unsigned
Circular Comparison

Why So Big?Why So Big?
� For sliding window, must have
� |Sequence Space| > |Sending Window| + |Receiving

Window|
� No problem

� Also, want to guard against stray packets
� With IP, packets have maximum lifetime of 120s
� Sequence number would wrap around in this time at 286MB/s

0Max

a

b

a < b

0Max

b
a

b < a

– 39 – 15-441

Error Control Summary

Basic mechanismsBasic mechanisms
� CRC, checksum
� Timeout
� Acknowledgement
� Sequence numbers
� Window

Many variations and detailsMany variations and details

– 40 – 15-441

TCP Flow Control

Recall sliding-window as used for error controlRecall sliding-window as used for error control
� For window size n, can send up to n bytes without receiving

an acknowledgement
� When the data are acknowledged then the window slides

forward

Achieve flow control via dynamically-sized windowAchieve flow control via dynamically-sized window
� Sender naturally tracks outstanding packets versus max

� Sending one packet decreases budget by one
� Receiver updates “open window” in every response

� Packet B ⇒ A contains Ack A and Window A
� Sender can send bytes up through (Ack A + Window A)
� Receiver can increase or decrease window at any time

� Original TCP always sent entire window
� Congestion control now limits this

– 41 – 15-441

Bidirectional Communication

Each Side of Connection can Send Each Side of Connection can Send andand Receive Receive

What this MeansWhat this Means
� Maintain different sequence numbers for each direction
� Single segment can contain new data for one direction, plus

acknowledgement for other
� But some contain only data & others only acknowledgement

Send bytes 1000:2000

Ack bytes 1000:2000
Send bytes 40000:42000

Ack bytes 40000:42000

– 42 – 15-441

Ongoing Communication
Bidirectional CommunicationBidirectional Communication

� Each side acts as sender & receiver
� Every message contains acknowledgement of received

sequence
� Even if no new data have been received

� Every message advertises window size
� Size of its receiving window

� Every message contains sent sequence number
� Even if no new data being sent

When Does Sender Actually Send Message?When Does Sender Actually Send Message?
� When a maximal-sized segment worth of bytes is available
� When application tells it

� Set PUSH flag for last segment sent
� When timer expires

– 43 – 15-441

acknowledged sent to be sent outside window

Source Port Dest. Port

Sequence Number

Acknowledgment

HL/Flags Window

D. Checksum Urgent Pointer

Options..

Source Port Dest. Port

Sequence Number

Acknowledgment

HL/Flags Window

D. Checksum Urgent Pointer

Options..

Host A ⇒ B Host B ⇒ A

App write

Window Flow Control: Send Side

– 44 – 15-441

TCP Transmission

Client sends 796 bytesClient sends 796 bytes

Client sends 1260 more Client sends 1260 more
bytesbytes

Server acknowledges Server acknowledges
1996 bytes1996 bytes

09:23:33.132509 IP 128.2.222.198.3123 > 192.216.219.96.80: P
 4019802005:4019802801(796) ack 3428951570 win 65535 (DF)

09:23:33.149875 IP 128.2.222.198.3123 > 192.216.219.96.80: .
 4019802801:4019804061(1260) ack 3428951570 win 65535 (DF)

09:23:33.212291 IP 192.216.219.96.80 > 128.2.222.198.3123: . ack
 4019802801 win 7164 (DF)

1

2

3

– 45 – 15-441

Tearing Down Connection
Either Side Can Initiate Tear Either Side Can Initiate Tear

DownDown
� Send FIN signal
� “I'm not going to send any more

data”

Other Side Can Continue Other Side Can Continue
Sending DataSending Data
� Half-open connection
� Must continue to acknowledge

Acknowledging FINAcknowledging FIN
� Acknowledge last sequence

number + 1

A B
FIN, SeqA

ACK, SeqA+1

ACK

Data

ACK, SeqB+1

FIN, SeqB

– 46 – 15-441

TCP Connection Teardown Example

SessionSession
� Echo client on 128.2.222.198, server on 128.2.210.194

Client FINClient FIN
� SeqC: 1489294581

Server ACK + FINServer ACK + FIN
� Ack: 1489294582 (= SeqC+1)
� SeqS: 1909787689

Client ACKClient ACK
� Ack: 1909787690 (= SeqS+1)

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616: F
 1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474: F
 1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616: . ack
 1909787690 win 65434 (DF)

– 47 – 15-441

State Diagram: Connection Tear-
down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN
CLOSE

send FIN
CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK
rcv FIN

delete TCB
Timeout=2msl

send FIN
CLOSE

send ACK
rcv FIN

snd ACK
rcv FIN

rcv ACK of FIN

snd ACK
rcv FIN+ACK

ACK

Active Close

Passive Close

– 49 – 15-441

Key TCP Design Decisions

Connection OrientedConnection Oriented
� Explicit setup & teardown of connections

Byte-stream orientedByte-stream oriented
� vs. message-oriented
� Sometimes awkward for application to infer message

boundaries

Sliding Window with Cumulative AcknowledgementSliding Window with Cumulative Acknowledgement
� Single acknowledgement covers range of bytes
� Single missing message may trigger series of

retransmissions

No Negative AcknowledgementsNo Negative Acknowledgements
� Any problem with transmission must be detected by timeout
� OK for IP to silently drop packets

