15-441

Computer Networking

TCP Connection Management,
Error Control
Nov. 1, 2004

Slides — Randy Bryant, Hui Zhang, lon Stoica, Dave
Eckhardt

L18_TCP

(Possible) Transport Protocol
Functions

Multiplexing/demultiplexing for multiple applications.
* “Port” abstraction abstracts OS notions of “process”

Connection establishment.
* Logical end-to-end connection
* Connection state to optimize performance

Error control.
* Hide unreliability of the network layer from applications
* Many types of errors: corruption, loss, duplication, reordering.

End-to-end flow control.
* Avoid flooding the receiver

Congestion control.
* Avoid flooding the network

_2- 15-441

Outline

Connection management
* What's a connection?
* How do we get one?

* Why so complicated?
- Threats

Error control, Flow control
e Stop & Walit vs. sliding window (conceptual and TCP)
* Ack flavors, windows, timeouts, sequence numbers

Next Lecture — Dave Maltz. Mobility
Monday — TCP again

* Congestion control — you will not address in Project 3

15-441

Transmission Control Protocol
(TCP)
Reliable bi-directional byte stream

Connections established & torn down
* Analogy: setting up & terminating phone

call Source Port Dest. Port
Multiplexing/ demultiplexing Data Sequence #
* Ports at both ends Acknowledgment Sequence #
Error control HL/Flags Window
e Users see correct, ordered byte D. Checksum | Urgent Pointer
Sequences Options..

End-end flow control

* Avoid overwhelming machines at each
end

Congestion avoidance
-4 - ¢ Avoid creating traffic jams within network 15-441

TCP Flags

SYN: Synchronize

* Used when setting up connection

FIN: Finish
* Used when tearing down connection
RESET
* I'm lost. Need to abort connection
PUSH
* Signal the receiving application that data is ready
URG: Urgent
* Segment includes “urgent” data
ACK

-5- e Acknowledging received data

15-441

Establishing Connection

SYN: SeqC
Client \> Server

ACK: SeqC+1

SYN: SeqS

ACK: SeqS+1

\>

Three-Way Handshake

* Each side notifies other of starting sequence number it will
use for sending

* Each side acknowledges other's sequence number
- SYN-ACK: Acknowledge sequence number + 1

e Can combine second SYN with first ACK

—6- 15-441

TCP Session Example

Use windump to trace typical TCP session

Client
e 128.2.222.198:3123

* Randy Bryant's laptop BRYANT-TP2.VLSI using ephemeral
port

Server
e 192.216.219.96:80
* \Web server at ceiva.com

Task

* Upload digital image to server

15-441

TCP Connection Setup Example

09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80: S
4019802004:4019802004(0) win 65535 <mss 1260,nop,nop,sackOK> (DF)

09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123: S
3428951569:3428951569(0) ack 4019802005 win 5840 <mss
1460,nop,nop,sackOK> (DF)

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80: . ack
3428951570 win 65535 (DF)

Client SYN
* SeqC: Seq. #4019802004, window 65535, max. seg. 1260

Server SYN-ACK+SYN
* Receive: #4019802005 (= SeqC+1)
* SeqS: Seq. #3428951569, window 5840, max. seg. 1460

Client SYN-ACK

e Receive: #3428951570 (= SeqS+1)
g 15-441

Connection Created

Client
128.2.222.198:3123

Sequence:
Window: 5840
Max. Segment: 1460

Sequence:
Window: 65535
Max. Segment: 1260

—

Server
192.216.219.96:80

> 4019802004

> 3428951569

15-441

TCP State Diagram: Connection
Setup
Client
[CLOSEDT. | active OPEN
Server create TCB
passive OPEN CLOSE Snd SYN
create TCB delete TCB
LISTEN CLOSE
delete TCB
rcv SYN SEND | y
snd SYN ACK snd SYN
SYN rcv SYN JYN
RCVD snd ACK SENT
rev ACK of SYN Rev SYN, ACK
Snd ACK
CLOSE > V3
Send FIN ESTAB
—10 - 15-441

Handshake — Why So Complicated?

Both sides specify a 32-bit sequence number
* Why can't they just both start with zero?

Recall IP's TTL field
e TTL Max = 255

* Originally expected to be 255 seconds !
* Reinterpreted to be 255 hops
* What happens if a really old packet arrives?
e Old connection: IP 1, Portq, IP2, Porto, [Seq1], [Seq 2]

* Which of those will be the same for a new connection?
* Can you guess how sequence numbers should be chosen?

~11- 15-441

Error Control — Threats

Network may corrupt frames
* Despite link-level checksum
* Despite switch/router memory ECC

* Example
* Store packet headers in separate memory from packet bodies
* Maintain association between header #343 and body #343
* Most of the time...

Packet-sequencing issues
* Network may duplicate packets (really?)
* Network may re-order packets (why?)
* Network may lose packets (often, actually)

—12- 15-441

Error Control

Add end-to-end checksum to TCP segments

Packet sequencing problems: per-segment sequence #
* Duplicate: ignhore
* Reordered: reorder or drop
* Lost: retransmit

Lost segments detected by sender.
* Receiver won't ACK a lost segment
* Use timeout to detect lack of acknowledgment
* Need estimate of the roundtrip time to set timeout

Retransmission requires sender to keep copy of data.
* Copy is discarded when ACK is received

- 13- 15-441

Error Control Algorithms

Use two basic techniques:
* Acknowledgements (ACKS)
* Timeouts

Two examples:
* Stop-and-wait
e Sliding window

— 14 —

15-441

Stop-and-Walit

Receiver: send an acknowledge (ACK) back to the sender

upon receiving a packet (frame)

Sender: excepting first packet, send a packet only upon
receiving the ACK for the previous packet

Sender

Time

— 15—

MK’

ACK

Receiver

15-441

What Can Go Wrong?

Sender Receiver Sender Receiver
'y frame X frame
3 3
O @ X
£ £ hE
= =
- frak‘ _‘Lw‘
Frame lost - resend it ACK lost - resend packet
on Timeout
Need a mechanism to
detect duplicate packet
—16 -

Sender Receiver

A

Timeout

ACK delayed — resend packet

Need a way to differentiate
between ACK for current

and previous packet — one bit
often enough

15-441

Stop-and-Wait Disadvantage

May lead to inefficient link utilization

Example
* One-way propagation = 15 ms
* Bandwidth = 100 Mbps

* Packet size = 1000 bytes: transmit = (8*1000)/10
* Neglect queue delay: Latency = approx. 15 ms; RTT =30 ms

= Propagation = 15 ms

-
I I
—
—
i

Bandwidth = 100 Mbps

17—

-
I I
1
—
—
o

8=0.08ms

15-441

Stop-and-Wait Disadvantage (cont’d)

Send a message every 30 ms
* Throughput = (8*1000)/0.03 = 0.2666 Mbps

Thus, the protocol uses less than 0.3% of the link

capacity! Sender Receiver
F frame
£
& ACK
$ frame
£
& ACK

- 18 - 15-441

Solution

Don't wait for the ACK of the previous packet before
sending the next packet!

— 19—

15-441

Sliding Window Protocol: Sender

Each packet has a sequence number
* Assume infinite sequence numbers for simplicity

Sender maintains a window of sequence numbers

* SWS (sender window size) — maximum number of
packets that can be sent without receiving an ACK

* LAR (last ACK received)
* LFS (last frame sent)

Acknowledged packets = Packets not acknowledged yet
A A

- N ™~

SRENEEERREN |

LAR LFS seq. numbers

~20- 15-441

Example

Assume SWS =3 Sender Receiver

Note: usually ACK contains the sequence number of the first packet in
sequence expected by receiver

—21—

15-441

Need for Receiver Window

oulhk WPNPE

Timeout

Time

Packet 5

Packets
Still
Arriving

~N o Ul N

td 4

Receiver

Sender

15-441

Sliding Window Protocol: Receliver

Receiver maintains a window of sequence numbers

* RWS (receiver window size) — maximum number of out-
of-sequence packets that can received

* LFR (last frame received) — last frame received in
sequence

* LAF (last acceptable frame)
* LAF - LFR <= RWS

— 23— 15-441

Sliding Window Protocol: Receiver

Let seqNum be the sequence number of arriving packet
If (seqNum <= LFR) or (seqNum >= LAF)

* Discard packet

Else
* Accept packet

* ACK largest sequence number seqNumToAck, such that all
packets with sequence numbers <= seqNumToAck were received

Packets in sequence Packets out-of-sequence

N A
- N ™~

SRENEEERREN |

LFR LAF seq. numbers

— 24 — 15-441

Choices of Ack

Cumulative ack
* | have received 17..23
* | have [still] received 17..23

Selective ack
* | received 17-23, 25-27

Negative ack
* | think I'm missing 24...

Tradeoffs?

- 29— 15-441

Choosing Window Size

RTT

Sender

\\\\
N\
N\
\\\\
N\
Receive

— TN w—)

Window Size
Roundtrip Time

Max Throughput =

~30- 15-441

Timeout Value Selection

Long timeout?
Short timeout?

Solution?

— 31—

15-441

Setting Retransmission Timeout
(RTO)

\Initifll Send Initial Send
RTO RTO { \»

Ack
w’ Retry
Ack
Detect dropped packet RTO too short

* Time between sending & resending segment

Challenge

* Too long: Add latency to communication when packets
dropped

* Too short: Send too many duplicate packets

* General principle: Must be > 1 Round Trip Time (RTT)
-32- 15-441

Round-trip Time Estimation

Every Data/Ack pair gives new RTT estimate

f“’

Sample < Ack

Can Get Lots of Short-Term Fluctuations

- 33 - 15-441

Original TCP Round-trip Estimator

Round trip times exponentially averaged:
* New RTT =a (old RTT) + (1 - a) (new sample)

e Recommended value for a: 0.8-0.9
- 0.875 for most TCP's

2.5

2

15 : [S— —|

1 4
0.5 [
o L

Retransmit timer setto B RTT, where B =2
—34— * Want to be somewhat conservative about retransmitting

15-441

RTT Sample Ambiguity

A B A B
W Original transmissjon
I RTO I RTO
Sample Sample
RTT RTT |
v v v v

Karn/Partridge Algorithm
* |gnore sample for segment that has been retransmitted

* Use exponential backoff for retransmissions
Each time retransmit same segment, double the RTO

Based upon premise that major congestion is causing packet

losses
— 35— 15-441

Seguence Number Space

Each byte in byte stream is numbered.
e 32 bit value
* Wraps around
* |nitial values selected at start up time

TCP breaks up the byte stream in packets (“segments”)
* Packet size is limited to the Maximum Segment Size

Each segment has a sequence number.
* |ndicates where it fits in the byte stream

13450 14950 16050 17550

! ! ! !

segment8 segment 9 segment 10

— 36— 15-441

Finite Length
Sequence Number

Sequence number can wrap around
* What is the problem?

* \What is the solution?
* Hint: not “crash the kernel”
* Not even “crash the connection” or “connection full”

—37- 15-441

Seqguence Numbers

32 Bits, Unsigned

Circular Comparison

Max O Max O

b<a a<b

Why So Big?
* For sliding window, must have
* |Sequence Space| > |Sending Window| + |Receiving
Window|
No problem

* Also, want to guard against stray packets
- With IP, packets have maximum lifetime of 120s
—- 38— - Seguence number would wrap around in this time at 286MB/s 15-441

Error Control Summary

Basic mechanisms
* CRC, checksum
e Timeout

Acknowledgement
* Sequence numbers
* Window

Many variations and details

— 39—

15-441

TCP Flow Control

Recall sliding-window as used for error control
* For window size n, can send up to n bytes without receiving
an acknowledgement
* When the data are acknowledged then the window slides
forward

Achieve flow control via dynamically-sized window
* Sender naturally tracks outstanding packets versus max
* Sending one packet decreases budget by one
* Receiver updates “open window” in every response
e Packet B [0 A contains Ack a and Window a
e Sender can send bytes up through (Ack A + Window 4)
* Receiver can increase or decrease window at any time

* Original TCP always sent entire window

* Congestion control now limits this
—40 - 15-441

Bidirectional Communication

Send bytes 1000:2000

\>

Ack bytes 1000:2000
Send bytes 40000:42000

| S o

Ack bytes 40000:42000

\>

Each Side of Connection can Send and Receive
What this Means

* Maintain different sequence numbers for each direction

* Single segment can contain new data for one direction, plus
acknowledgement for other

- But some contain only data & others only acknowledgement
—41 — 15-441

Ongoing Communication

Bidirectional Communication
* Each side acts as sender & receiver

* Every message contains acknowledgement of received
seguence

Even if no new data have been received

* Every message advertises window size
- Size of its receiving window

* Every message contains sent sequence number
Even if no new data being sent

When Does Sender Actually Send Message?
* When a maximal-sized segment worth of bytes is available

* When application tells it
- Set PUSH flag for last segment sent

* When timer expires
—42 —

15-441

Window Flow Control: Send Side

Host A [B HostB [A

Dest. Port Dest. Port

Source Port

Sequence Number Seqguence Number
Acknowledgment Acknowledgment

HL/Flags Window HL/Flags Window
D. Checksum | Urgent Pointer D. Checksiim | Urgent Pointer
Options.. Options..

App write

€ O & >
sent to be sent outside window
— 43— 15-441

&
-

TCP Transmission

09:23:33.132509 IP 128.2.222.198.3123 > 192.216.219.96.80: P
4019802005:4019802801(796) ack 3428951570 win 65535 (DF)

09:23:33.149875 IP 128.2.222.198.3123 > 192.216.219.96.80: .
4019802801:4019804061(1260) ack 3428951570 win 65535 (DF)

09:23:33.212291 IP 192.216.219.96.80 > 128.2.222.198.3123: . ack
4019802801 win 7164 (DF)

Client sends 796 bytes

1
\ Client sends 1260 more

bytes

2
\» Server acknowledges
/ 1996 bytes

—44 — 15-441

Tearing Down Connection

Either Side Can Initiate Tear A B

Down FIN, SeqA
* Send FIN signal \

- _ ACK, SeqgA+1
* “I'm not going to send any more
data” b

Other Side Can Continue K
Sending Data
* Half-open connection W
e Must continue to acknowledge w

Acknowledging FIN

* Acknowledge last sequence
number + 1

— 45— 15-441

TCP Connection Teardown Example

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616: F
1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474: F
1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616: . ack
1909787690 win 65434 (DF)

Session
* Echo clienton 128.2.222.198, server on 128.2.210.194

Client FIN
* SeqC: 1489294581

Server ACK + FIN
e Ack: 1489294582 (= SeqC+1)
* SeqS: 1909787689

Client ACK
~46- o Ack: 1909787690 (= SeqS+1) 15-441

State Diagram: Connection Tear-
down

CLOSE Active Cl

send FIN ctive Close | (ESTAB
! CLOSE evFIN passive Close

FIN send FIN send ACK CLOSE
WAIT-1 | WAIT

rcv FIN
JACI-. snd ACK LOSE
shd FIN

FIN WAIT{2

CLOSING lAST-ACK

Jrcv ACKoOf FIN oV ACKi’f FIN

g
Mghme-vmrﬁ > CLOSED

Timeout=2msl
snd ACK delete TCB

— 47— 15-441

Key TCP Design Decisions

Connection Oriented
* EXxplicit setup & teardown of connections

Byte-stream oriented
* VS. message-oriented

* Sometimes awkward for application to infer message
boundaries

Sliding Window with Cumulative Acknowledgement
* Single acknowledgement covers range of bytes

* Single missing message may trigger series of
retransmissions

No Negative Acknowledgements
* Any problem with transmission must be detected by timeout
~49- ¢ OK for IP to silently drop packets 15-441

