
15-441 Computer Networks

Congestion Control

Professor Hui Zhang

hzhang@cs.cmu.edu

1

2 Hui Zhang

Review of Sliding Window Protocol
For Error Control

Sender window size
Maximum number of outstanding bytes (octets) before ack

Receiver window size
Maximum number of out-of-order bytes

Sequence number to uniquely identify bytes
Sender window

Valid set of outstanding bytes

Receiver window
Valid set of bytes to be received

Timeout to detect loss
Retransmission to recover from loss

3 Hui Zhang

Choices of Ack

Cumulative ack

Selective ack

Negative ack

Tradeoffs?

4 Hui Zhang

Timeout Value Selection

Long timeout?

Short timeout?

Solution?

5 Hui Zhang

Sliding Window for Flow Control

What is flow control?

How to use sliding window protocol to implement
flow control?

6 Hui Zhang

Sliding Window for Congestion Control

What is congestion?

How to implement congestion control using
sliding window?

7 Hui Zhang

Review of TCP

Sliding window with cumulative acks
Receiver can only return a single “ack” sequence number to the
sender.

Acknowledges all bytes with a lower sequence number

Starting point for retransmission

Duplicate acks sent when out-of-order packet received

But: sender only retransmits a single packet.
Reason???

Error control is based on byte sequences, not packets.
Retransmitted packet can be different from the original lost packet –
Why?

8 Hui Zhang

TCP Header Review

Packet ReceivedPacket Sent

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options..Options..

Source PortSource Port Dest. PortDest. Port

Sequence NumberSequence Number

AcknowledgmentAcknowledgment

HL/FlagsHL/Flags WindowWindow

D. ChecksumD. Checksum Urgent PointerUrgent Pointer

Options..Options..

acknowledged sent to be sent

9 Hui Zhang

Importance of Window

Window mechanism implements both flow and
congestion control
Data can only be sent when the amount of
outstanding data is less than the size of
congestion window.

The amount of outstanding data is increased on a “send” and
decreased on “ack”

(last sent – last acked) < congestion window

Window limited by both congestion and buffering
Sender’s maximum window = Min (advertised window, cwnd)

10 Hui Zhang

Window Size and Throughput

throughput

optimal

window size

Larger the window size, higher the throughput
Max Throughput = Window size /Round-trip Time

Need to worry about sequence number wrapping

Everyone uses large window size
Too much traffic, router buffers overflow, packets dropped

End systems keep retransmitting the same packets

Nothing gets through

Congestion collapse!

How do you pick the window size?

11 Hui Zhang

What is Steady State?

Packet conservation
at equilibrium, inject packet into network only when one is
removed

Self clocking
Acknowledgement triggers the transmission of next packet

12 Hui Zhang

Reaching Steady State

How does TCP know what is a good initial rate to
start with?

Should work both for modem (14.4 kbps) and for OC-192
links (10 Gbps)

Quick initial phase to help get up to speed (slow
start)

13 Hui Zhang

TCP Congestion Control

Initially, quickly increase the congestion window size until a
packet is lost to get a rough estimate of the optimal congestion
window size

“Slow Start”

Exponential increase

Starting from the rough estimate, slowly increase the congestion
window size to probe for additional available bandwidth

“Congestion Avoidance”

Additive increase

Cut congestion window size aggressively if a timeout occurs

Multiplicative decrease

14 Hui Zhang

TCP Congestion Control Pseudocode

Initially:

cwnd = 1;
ssthresh = infinite;

New ack received:

if (cwnd < ssthresh)
/* Slow Start*/
cwnd = cwnd + 1;

else
/*Congestion Avoidance*/
cwnd = cwnd + 1/cwnd;

Timeout:

/* Multiplicative decrease */
ssthresh = 0.5 * win;
cwnd = 1;

while (next < unack + win)
transmit next packet;

where win = min(cwnd,
flow_win);

unack next

win

seq #

15 Hui Zhang

Slow Start

Whenever starting traffic on a new connection, or
whenever increasing traffic after congestion was
experienced:

– Set cwnd =1

– Each time a segment is acknowledged increment cwnd
by one (cwnd++).

Does Slow Start increment slowly? Not really.
In fact, the increase of cwnd is exponential

16 Hui Zhang

Slow Start Example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

17 Hui Zhang

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

18 Hui Zhang

Multiplicative Decrease

What happens if we send too
much?
What does send do if there is a
timeout?

19 Hui Zhang

Congestion Avoidance

If loss occurs when cwnd = W
Network can handle 0.5W ~ W segments

Set cwnd to 0.5W (multiplicative decrease)

Upon receiving ACK
Increase cwnd by 1/cwnd

Implements AIMD

20 Hui Zhang

Congestion Avoidance Sequence Plot

Time

Sequence No

Packets

Acks

21 Hui Zhang

The big picture

cwnd

Timeout

Slow Start

Congestion
Avoidance

Time

22 Hui Zhang

Round-trip Time Estimation

Wait at least one RTT before retransmitting

Importance of accurate RTT estimators:
Low RTT unneeded retransmissions

High RTT poor throughput

RTT estimator must adapt to change in RTT
But not too fast, or too slow!

23 Hui Zhang

Initial Round-trip Estimator

Round trip times exponentially averaged:
New RTT = α (old RTT) + (1 - α) (new sample)

Recommended value for α: 0.8 - 0.9

– 0.875 for most TCP’s

Retransmit timer set to β RTT, where β = 2
Every time timer expires, RTO exponentially backed-off

Like Ethernet

Not good at preventing spurious timeouts

Why?

24 Hui Zhang

Jacobson’s Retransmission Timeout

Key observation:
At high loads round trip variance is high

Solution:
Base RTO on RTT and standard deviation

rttvar = χ * dev + (1- χ)rttvar

– Dev = linear deviation

– Inappropriately named – actually smoothed
linear deviation

25 Hui Zhang

Retransmission Ambiguity

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B
Original transmission

retransmission
Sample
RTT

ACKRTO
X

26 Hui Zhang

Karn’s RTT Estimator

Accounts for retransmission ambiguity

If a segment has been retransmitted:
Don’t count RTT sample on ACKs for this segment

Keep backed off time-out for next packet

Reuse RTT estimate only after one successful
transmission

27 Hui Zhang

Timestamp Extension

Used to improve timeout mechanism by more
accurate measurement of RTT
When sending a packet, insert current timestamp
into option

4 bytes for timestamp, 4 bytes for echo

Receiver echoes timestamp in ACK
Actually will echo whatever is in timestamp

Removes retransmission ambiguity
Can get RTT sample on any packet

28 Hui Zhang

Timer Granularity

Many TCP implementations set RTO in multiples
of 200,500,1000ms

Why?
RTTs can vary quickly due to cross traffic

Make timers interrupts efficient

What is the implication?

29 Hui Zhang

Avoiding Timeouts

Current mechanism to detect packet loss is
timeout

Large timeout value slows down communication

Alternative way of detecting loss?

30 Hui Zhang

Fast Retransmit

What are duplicate acks (dupacks)?
Repeated acks for the same sequence

When can duplicate acks occur?
Loss

Packet re-ordering

Window update – advertisement of new flow control window

Assume re-ordering is infrequent and not of large
magnitude

Use receipt of 3 or more duplicate acks as indication of loss

Don’t wait for timeout to retransmit packet

31 Hui Zhang

Fast Retransmit

Time

Sequence No Duplicate Acks

RetransmissionX

Packets

Acks

32 Hui Zhang

Fast Retransmit and Fast Recovery
cwnd

Slow Start

Congestion
Avoidance

TimeRetransmit after 3 duplicated acks
prevent expensive timeouts

No need to slow start again

At steady state, cwnd oscillates around the
optimal window size.

33 Hui Zhang

TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

34 Hui Zhang

How to Improve?

Timeout value
Explicitly signaling RTT (how?)

Loss as congestion signal
Good signal?

Better signal?

Rely on accurate calculation of timeout

16 bits window size big enough?
32 bits sequence number?
Synchronization effect
Fairness?
Non-cooperative sources

	Review of Sliding Window ProtocolFor Error Control
	Choices of Ack
	Timeout Value Selection
	Sliding Window for Flow Control
	Sliding Window for Congestion Control
	Review of TCP
	TCP Header Review
	Importance of Window
	Window Size and Throughput
	What is Steady State?
	Reaching Steady State
	TCP Congestion Control
	TCP Congestion Control Pseudocode
	Slow Start
	Slow Start Example
	Slow Start Sequence Plot
	Multiplicative Decrease
	Congestion Avoidance
	Congestion Avoidance Sequence Plot
	The big picture
	Round-trip Time Estimation
	Initial Round-trip Estimator
	Jacobson’s Retransmission Timeout
	Retransmission Ambiguity
	Karn’s RTT Estimator
	Timestamp Extension
	Timer Granularity
	Avoiding Timeouts
	Fast Retransmit
	Fast Retransmit
	Fast Retransmit and Fast Recovery
	TCP Saw Tooth Behavior
	How to Improve?

