
Network Programming Introduction
Sept. 1, 2004

TopicsTopics
� Programmer's view of the Internet
� Sockets interface
� Writing clients and servers
� Concurrency with I/O multiplexing

Class02a

15-441

(Borrowing heavily from 15-213)

– 2 – 15-441, Fall 2003

About This Lecture

“Intro to writing client/server programs with TCP”“Intro to writing client/server programs with TCP”
� Stolen from 15-213
� Should be “review”
� Will zoom through these slides

� You may review at your leisure

Extensions to reach Project 1Extensions to reach Project 1
� 15-213 “rio” package may not be advisable
� You'll use UDP, not TCP

� Packet protocol rather than byte-stream
� No “connections” (hence no “disconnections” aka EOFs)
� You may find error reporting confusing at first

– 3 – 15-441, Fall 2003

A Client-Server Transaction

Client
process

Server
process

1. Client sends request

2. Server
handles
request

3. Server sends response4. Client
handles

response

Resource

Every network application is based on the client-server Every network application is based on the client-server
model:model:
� A server process and one or more client processes
� Server manages some resource .
� Server provides service by manipulating resource for

clients.

Note: clients and servers are processes running on hosts
(can be the same or different hosts).

– 4 – 15-441, Fall 2003

Network Applications

Access to Network via Program InterfaceAccess to Network via Program Interface
� Sockets make network I/O look like files
� Call system functions to control and communicate
� Network code handles issues of routing, reliability, ordering,

etc.

Client Computer

OS

Network
Interface

Client
Appl.

Socket
OS +
Network
APIs

Server Computer

OS

Network
Interface

Server
Appl.

Socket
OS +
Network
APIs

Internet

– 5 – 15-441, Fall 2003

Clients

Examples of client programsExamples of client programs
� Web browsers, ftp , telnet , ssh

How does a client find the server?How does a client find the server?
� The IP address in the server socket address identifies the

host (more precisely, an adaptor on the host)
� The (well-known) port in the server socket address identifies

the service, and thus implicitly identifies the server process
that performs that service.

� Examples of well-known ports
� Port 7: Echo server
� Port 23: Telnet server
� Port 25: Mail server
� Port 80: Web server

– 6 – 15-441, Fall 2003

Internet Connections (TCP/IP)

Connection socket pair
(128.2.194.242:3479, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:3479

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

Clients and servers communicate by sending streams Clients and servers communicate by sending streams
of bytes over of bytes over connectionsconnections ..

Connections are point-to-point, full-duplex (2-way Connections are point-to-point, full-duplex (2-way
communication), and reliable.communication), and reliable.

Note: 3479 is an
ephemeral port allocated

by the kernel

Note: 80 is a well-known port
associated with Web servers

– 7 – 15-441, Fall 2003

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

– 8 – 15-441, Fall 2003

Servers

Servers are long-running processes (daemons).Servers are long-running processes (daemons).
� Created at boot-time (typically) by the init process (process 1)
� Run continuously until the machine is turned off.

Each server waits for requests to arrive on a well-known Each server waits for requests to arrive on a well-known
port associated with a particular service.port associated with a particular service.
� Port 7: echo server
� Port 23: telnet server
� Port 25: mail server
� Port 80: HTTP server

A machine that runs a server process is also often A machine that runs a server process is also often
referred to as a “server.”referred to as a “server.”

See /etc/services for a
comprehensive list of the
services available on a
Linux machine.

– 9 – 15-441, Fall 2003

Sockets Interface

Created in the early 80’s as part of the original Berkeley Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of distribution of Unix that contained an early version of
the Internet protocols.the Internet protocols.

Provides a user-level interface to the network.Provides a user-level interface to the network.

Underlying basis for all Internet applications.Underlying basis for all Internet applications.

Based on client/server programming model.Based on client/server programming model.

– 10 – 15-441, Fall 2003

Client /
Server
Session

Overview of the Sockets Interface
Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

– 11 – 15-441, Fall 2003

Sockets

What is a socket?What is a socket?
� To the kernel, a socket is an endpoint of communication.
� To an application, a socket is a file descriptor that lets the

application read/write from/to the network.
� Remember: All Unix I/O devices, including networks, are

modeled as files.

Clients and servers communicate with each by reading Clients and servers communicate with each by reading
from and writing to socket descriptors.from and writing to socket descriptors.

The main distinction between regular file I/O and socket The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket I/O is how the application “opens” the socket
descriptors.descriptors.

– 12 – 15-441, Fall 2003

Socket Address Structures
Generic socket address:Generic socket address:

� For address arguments to connect , bind , and accept.

� Necessary only because C did not have generic (void *)
pointers when the sockets interface was designed.

�

�

�

Internet-specific socket address:Internet-specific socket address:
� Must cast (sockaddr_in *) to (sockaddr *) for connect ,

bind , and accept .

struct sockaddr {
 unsigned short sa_family; /* protocol family */
 char sa_data[14]; /* address data. */
};

struct sockaddr_in {
 unsigned short sin_family; /* address family (always AF_INET) */
 unsigned short sin_port; /* port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */
};

– 13 – 15-441, Fall 2003

Reliable I/O (RIO) Summary

I/O Package Developed by David O’HallaronI/O Package Developed by David O’Hallaron
� http://csapp.cs.cmu.edu/public/code.html (csapp.{h,c})
� Allows mix of buffered and unbuffered I/O

Important FunctionsImportant Functions
� rio_writen(int fd, void *buf, size_t n)

� Writes n bytes from buffer buf to file fd .
� rio_readlineb(rio_t *rp, void *buf, size_t maxn)

� Read complete text line from file rp into buffer buf .
» Line must be terminated by newline (\n) character

� Up to maximum of maxn bytes

– 14 – 15-441, Fall 2003

Echo Client Main Routine
#include "csapp.h"

/* usage: ./echoclient host port */
int main(int argc, char **argv)
{
 int clientfd, port;
 char *host, buf[MAXLINE];
 rio_t rio;

 host = argv[1];
 port = atoi(argv[2]);

 clientfd = Open_clientfd(host, port);
 Rio_readinitb(&rio, clientfd);

 while (Fgets(buf, MAXLINE, stdin) != NULL) {
 Rio_writen(clientfd, buf, strlen(buf));
 Rio_readlineb(&rio, buf, MAXLINE);
 Fputs(buf, stdout);
 }
 Close(clientfd);
 exit(0);
}

Send line to
server

Receive line
from server

– 15 – 15-441, Fall 2003

Echo Client: open_clientfd
int open_clientfd(char *hostname, int port)
{
 int clientfd;
 struct hostent *hp;
 struct sockaddr_in serveraddr;

 if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 return -1; /* check errno for cause of error */

 /* Fill in the server's IP address and port */
 if ((hp = gethostbyname(hostname)) == NULL)
 return -2; /* check h_errno for cause of error */
 bzero((char *) &serveraddr, sizeof(serveraddr));
 serveraddr.sin_family = AF_INET;
 bcopy((char *)hp->h_addr,
 (char *)&serveraddr.sin_addr.s_addr, hp->h_length);
 serveraddr.sin_port = htons(port);

 /* Establish a connection with the server */
 if (connect(clientfd, (SA *) &serveraddr, sizeof(serveraddr)) < 0)
 return -1;
 return clientfd;
}

This function opens a
connection from the client to
the server at hostname:port

– 16 – 15-441, Fall 2003

Echo Client: open_clientfd
(socket)

int clientfd; /* socket descriptor */

if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 return -1; /* check errno for cause of error */

... (more)

socketsocket creates a socket descriptor on the client. creates a socket descriptor on the client.
� AF_INET : indicates that the socket is associated with Internet

protocols.
� SOCK_STREAM: selects a reliable byte stream connection.

– 17 – 15-441, Fall 2003

Echo Client: open_clientfd
(gethostbyname)

The client then builds the server’s Internet address.The client then builds the server’s Internet address.

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

...

/* fill in the server's IP address and port */
if ((hp = gethostbyname(hostname)) == NULL)
 return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
bcopy((char *)hp->h_addr,
 (char *)&serveraddr.sin_addr.s_addr, hp->h_length);
serveraddr.sin_port = htons(port);

– 18 – 15-441, Fall 2003

Echo Client: open_clientfd
(connect)

Finally the client creates a connection with the server.Finally the client creates a connection with the server.
� Client process suspends (blocks) until the connection is created.
� After resuming, the client is ready to begin exchanging messages

with the server via Unix I/O calls on descriptor sockfd.

 int clientfd; /* socket descriptor */
 struct sockaddr_in serveraddr; /* server address */
 typedef struct sockaddr SA; /* generic sockaddr */
...
 /* Establish a connection with the server */
 if (connect(clientfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
 return -1;
 return clientfd;
}

– 19 – 15-441, Fall 2003

Echo Server: Main Routine
int main(int argc, char **argv) {
 int listenfd, connfd, port, clientlen;
 struct sockaddr_in clientaddr;
 struct hostent *hp;
 char *haddrp;

 port = atoi(argv[1]); /* the server listens on a port passed
 on the command line */
 listenfd = open_listenfd(port);

 while (1) {
 clientlen = sizeof(clientaddr);
 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
 hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,
 sizeof(clientaddr.sin_addr.s_addr), AF_INET);
 haddrp = inet_ntoa(clientaddr.sin_addr);
 printf("Fd %d connected to %s (%s:%s)\n",

connfd, hp->h_name, haddrp, ntohs(clientaddr.sin_port));
 echo(connfd);
 Close(connfd);
 }
}

– 20 – 15-441, Fall 2003

Echo Server: open_listenfd
int open_listenfd(int port)
{
 int listenfd, optval=1;
 struct sockaddr_in serveraddr;

 /* Create a socket descriptor */
 if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 return -1;

 /* Eliminates "Address already in use" error from bind. */
 if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
 (const void *)&optval , sizeof(int)) < 0)
 return -1;

... (more)

– 21 – 15-441, Fall 2003

Echo Server: open_listenfd (cont)

...

 /* Listenfd will be an endpoint for all requests to port
 on any IP address for this host */
 bzero((char *) &serveraddr, sizeof(serveraddr));
 serveraddr.sin_family = AF_INET;
 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
 serveraddr.sin_port = htons((unsigned short)port);
 if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
 return -1;

 /* Make it a listening socket ready to accept
 connection requests */
 if (listen(listenfd, LISTENQ) < 0)
 return -1;

 return listenfd;
}

– 22 – 15-441, Fall 2003

socketsocket creates a socket descriptor on the server. creates a socket descriptor on the server.
� AF_INET : indicates that the socket is associated with Internet

protocols.
� SOCK_STREAM: selects a reliable byte stream connection.
�

�

Echo Server: open_listenfd
(socket)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 return -1;

– 23 – 15-441, Fall 2003

Echo Server: open_listenfd
(initialize socket address)

Next, we initialize the socket with the server’s Internet Next, we initialize the socket with the server’s Internet
address (IP address and port)address (IP address and port)

IP addr and port stored in network (big-endian) byte orderIP addr and port stored in network (big-endian) byte order
� htonl() converts longs from host byte order to network byte

order.
� htons() converts shorts from host byte order to network byte

order.

 struct sockaddr_in serveraddr; /* server's socket addr */
...
 /* listenfd will be an endpoint for all requests to port
 on any IP address for this host */
 bzero((char *) &serveraddr, sizeof(serveraddr));
 serveraddr.sin_family = AF_INET;
 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
 serveraddr.sin_port = htons((unsigned short)port);

– 24 – 15-441, Fall 2003

Echo Server: open_listenfd
(bind)

bind bind associates the socket with the socket address we associates the socket with the socket address we
just created.just created.

int listenfd; /* listening socket */
struct sockaddr_in serveraddr; /* server’s socket addr */

...
 /* listenfd will be an endpoint for all requests to port
 on any IP address for this host */
 if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
 return -1;

– 25 – 15-441, Fall 2003

Echo Server: open_listenfd
(listen)

listenlisten indicates that this socket will accept indicates that this socket will accept
connection (connection (connectconnect) requests from clients.) requests from clients.

We’re finally ready to enter the main server loop that We’re finally ready to enter the main server loop that
accepts and processes client connection requests.accepts and processes client connection requests.

int listenfd; /* listening socket */

...
 /* Make it a listening socket ready to accept connection requests */
 if (listen(listenfd, LISTENQ) < 0)
 return -1;
 return listenfd;
}

– 26 – 15-441, Fall 2003

Echo Server: Main Loop
The server loops endlessly, waiting for connection The server loops endlessly, waiting for connection

requests, then reading input from the client, and requests, then reading input from the client, and
echoing the input back to the client. echoing the input back to the client.

main() {

 /* create and configure the listening socket */

 while(1) {
 /* Accept(): wait for a connection request */
 /* echo(): read and echo input lines from client til EOF */
 /* Close(): close the connection */
 }
}

– 27 – 15-441, Fall 2003

accept()accept() blocks waiting for a connection request. blocks waiting for a connection request.

acceptaccept returns a returns a connected descriptor connected descriptor ((connfdconnfd) with) with
the same properties as the the same properties as the listening descriptorlistening descriptor
((listenfd)listenfd)
� Returns when the connection between client and server is

created and ready for I/O transfers.
� All I/O with the client will be done via the connected socket.

accept accept also fills in client’s IP address. also fills in client’s IP address.

Echo Server: accept

 int listenfd; /* listening descriptor */
 int connfd; /* connected descriptor */
 struct sockaddr_in clientaddr;
 int clientlen;

 clientlen = sizeof(clientaddr);
 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

– 28 – 15-441, Fall 2003

Echo Server: accept Illustrated
listenfd(3)

Client

1. Server blocks in accept ,
waiting for connection
request on listening
descriptor listenfd .clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection
request by calling and blocking in
connect.

Connection
request

listenfd(3)

Client

clientfd

Server

3. Server returns connfd from
accept . Client returns from
connect . Connection is now
established between clientfd
and connfd .

connfd(4)

– 29 – 15-441, Fall 2003

Connected vs. Listening Descriptors

Listening descriptorListening descriptor
� End point for client connection requests.
� Created once and exists for lifetime of the server.

Connected descriptorConnected descriptor
� End point of the connection between client and server.
� A new descriptor is created each time the server accepts a

connection request from a client.
� Exists only as long as it takes to service client.

Why the distinction?Why the distinction?
� Allows for concurrent servers that can communicate over

many client connections simultaneously.

– 30 – 15-441, Fall 2003

Echo Server: Identifying the Client
The server can determine the domain name, IP address, The server can determine the domain name, IP address,

and port of the client.and port of the client.

 struct hostent *hp; /* pointer to DNS host entry */
 char *haddrp; /* pointer to dotted decimal string */

 hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,
 sizeof(clientaddr.sin_addr.s_addr), AF_INET);
 haddrp = inet_ntoa(clientaddr.sin_addr);
 printf("Fd %d connected to %s (%s:%s)\n",

 connfd, hp->h_name, haddrp, ntohs(clientaddr.sin_port));

– 31 – 15-441, Fall 2003

Echo Server: echo

void echo(int connfd)
{
 size_t n;
 char buf[MAXLINE];
 rio_t rio;

 Rio_readinitb(&rio, connfd);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
 printf("server received %d bytes\n", n);
 Rio_writen(connfd, buf, n);
 }
}

The server uses RIO to read and echo text lines until The server uses RIO to read and echo text lines until
EOF (end-of-file) is encountered.EOF (end-of-file) is encountered.
� EOF notification caused by client calling

close(clientfd).
� IMPORTANT: EOF is a condition, not a particular data byte.

Send line to
client

Receive line
from client

– 32 – 15-441, Fall 2003

Running Echo Client/Server
[bryant@bryant echo]$./echoservers 15441[bryant@bryant echo]$./echoservers 15441
fd 4 connected to BRYANT-TP2.VLSI.CS.CMU.EDU (128.2.222.198:3507)
[bryant@bryant echo]$./echoservers 15441
fd 4 connected to BRYANT-TP2.VLSI.CS.CMU.EDU (128.2.222.198:3507)
Server received 12 (12 total) bytes on fd 4

[bryant@bryant-tp2 echo]$./echoclient bryant.vlsi.cs.cmu.edu 15441
hello world
hello world

– 33 – 15-441, Fall 2003

Iterative Servers

Iterative servers process one request at a time.Iterative servers process one request at a time.

client 1 server client 2

call connect call accept

ret connect
ret accept

call connect

call read
write

ret read
close

close
call accept

ret connect

call read

ret read

close

write

ret accept

close

– 34 – 15-441, Fall 2003

Fundamental Flaw of Iterative Servers

Solution: use Solution: use concurrent servers concurrent servers instead.instead.
� Concurrent servers use multiple concurrent flows to serve

multiple clients at the same time.

client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect
call fgets

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to complete
its connection
request until after
lunch!

Server blocks
waiting for
data from
Client 1

– 35 – 15-441, Fall 2003

Concurrent Servers

Concurrent servers handle multiple requests concurrently.Concurrent servers handle multiple requests concurrently.
client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect

call fgets
forkchild 1

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

call accept
ret connect

ret accept call fgets

writefork

call
read

child 2

write

call read

end read

close
close

...

– 36 – 15-441, Fall 2003

Our Focus

Possible Mechanisms for Creating
Concurrent Flows

1. Processes1. Processes
� Kernel automatically interleaves multiple logical flows.
� Each flow has its own private address space.

2. I/O multiplexing with 2. I/O multiplexing with select()select()
� User manually interleaves multiple logical flows.
� Each flow shares the same address space.
� Popular for high-performance server designs.

3. Threads3. Threads
� Kernel automatically interleaves multiple logical flows.
� Each flow shares the same address space.
� Hybrid of processes and I/O multiplexing!
�

– 37 – 15-441, Fall 2003

Event-Based Concurrent Servers
Using I/O Multiplexing

Maintain a pool of connected descriptors.Maintain a pool of connected descriptors.

Repeat the following forever:Repeat the following forever:
� Use the Unix select f unction to block until:

� (a) New connection request arrives on the listening descriptor.
� (b) New data arrives on an existing connected descriptor.

� If (a), add the new connection to the pool of connections.
� If (b), read any available data from the connection

� Close connection on EOF and remove it from the pool.

– 38 – 15-441, Fall 2003

The select Function
select()select() sleeps until one or more file descriptors in the set sleeps until one or more file descriptors in the set readset readset

ready for reading. ready for reading.

#include <sys/select.h>

int select(int maxfdp1, fd_set *readset, NULL, NULL, NULL);

readset
• Opaque bit vector (max FD_SETSIZE bits) that indicates

membership in a descriptor set.
• On Linux machines, FD_SETSIZE = 1024

• If bit k is 1, then descriptor k is a member of the descriptor set.
• When call select , should have readset indicate which descriptors to

test
maxfdp1

• Maximum descriptor in descriptor set plus 1.
• Tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership.

select()select() returns the number of ready descriptors and keeps on each bit returns the number of ready descriptors and keeps on each bit
 of of readsetreadset for which corresponding descriptor is ready for which corresponding descriptor is ready

– 39 – 15-441, Fall 2003

Macros for Manipulating Set
Descriptors
void FD_ZERO(fd_set *fdset);void FD_ZERO(fd_set *fdset);

� Turn off all bits in fdset .

void FD_SET(int fd, fd_set *fdset);void FD_SET(int fd, fd_set *fdset);

� Turn on bit fd in fdset .

void FD_CLR(int fd, fd_set *fdset);void FD_CLR(int fd, fd_set *fdset);

� Turn off bit fd in fdset .

int FD_ISSET(int fd, *fdset);int FD_ISSET(int fd, *fdset);

� Is bit fd in fdset turned on?

– 40 – 15-441, Fall 2003

Event-based Concurrent Echo Server

/*
 * echoservers.c - A concurrent echo server based on select
 */
#include "csapp.h"

typedef struct { /* represents a pool of connected descriptors */
 int maxfd; /* largest descriptor in read_set */
 fd_set read_set; /* set of all active descriptors */
 fd_set ready_set; /* subset of descriptors ready for reading */
 int nready; /* number of ready descriptors from select */

 int maxi; /* highwater index into client array */
 int clientfd[FD_SETSIZE]; /* set of active descriptors */
 rio_t clientrio[FD_SETSIZE]; /* set of active read buffers */
} pool;

int byte_cnt = 0; /* counts total bytes received by server */

– 41 – 15-441, Fall 2003

Event-based Concurrent Server
(cont)
int main(int argc, char **argv)
{
 int listenfd, connfd, clientlen = sizeof(struct sockaddr_in);
 struct sockaddr_in clientaddr;
 static pool pool;

 listenfd = Open_listenfd(argv[1]);
 init_pool(listenfd, &pool);

 while (1) {
 pool.ready_set = pool.read_set;
 pool.nready = Select(pool.maxfd+1, &pool.ready_set,
 NULL, NULL, NULL);

 if (FD_ISSET(listenfd, &pool.ready_set)) {
 connfd = Accept(listenfd, (SA *)&clientaddr,&clientlen);
 add_client(connfd, &pool);
 }
 check_clients(&pool);
 }
}

– 42 – 15-441, Fall 2003

Event-based Concurrent Server
(cont)
/* initialize the descriptor pool */
void init_pool(int listenfd, pool *p)
{
 /* Initially, there are no connected descriptors */
 int i;
 p->maxi = -1;
 for (i=0; i< FD_SETSIZE; i++)
 p->clientfd[i] = -1;

 /* Initially, listenfd is only member of select read set */
 p->maxfd = listenfd;
 FD_ZERO(&p->read_set);
 FD_SET(listenfd, &p->read_set);
}

– 43 – 15-441, Fall 2003

Event-based Concurrent Server
(cont)
void add_client(int connfd, pool *p) /* add connfd to pool p */
{
 int i;
 p->nready--;

 for (i = 0; i < FD_SETSIZE; i++) /* Find available slot */
 if (p->clientfd[i] < 0) {
 p->clientfd[i] = connfd;
 Rio_readinitb(&p->clientrio[i], connfd);

 FD_SET(connfd, &p->read_set); /* Add desc to read set */

 if (connfd > p->maxfd) /* Update max descriptor num */
 p->maxfd = connfd;
 if (i > p->maxi) /* Update pool high water mark */
 p->maxi = i;
 break;
 }
 if (i == FD_SETSIZE) /* Couldn't find an empty slot */
 app_error("add_client error: Too many clients");
}

– 44 – 15-441, Fall 2003

Event-based Concurrent Server
(cont)void check_clients(pool *p) { /* echo line from ready descs in pool p */

 int i, connfd, n;
 char buf[MAXLINE];
 rio_t rio;

 for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {
 connfd = p->clientfd[i];
 rio = p->clientrio[i];

 /* If the descriptor is ready, echo a text line from it */
 if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) {
 p->nready--;
 if ((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
 byte_cnt += n;
 Rio_writen(connfd, buf, n);
 }
 else {/* EOF detected, remove descriptor from pool */
 Close(connfd);
 FD_CLR(connfd, &p->read_set);
 p->clientfd[i] = -1;
 }
 }
 }
}

– 45 – 15-441, Fall 2003

Pro and Cons of Event-Based Designs

+ One logical control flow.+ One logical control flow.

+ Can single-step with a debugger.+ Can single-step with a debugger.

+ No process or thread control overhead.+ No process or thread control overhead.
� Design of choice for high-performance Web servers and

search engines.

- Significantly more complex to code than process- or - Significantly more complex to code than process- or
thread-based designs.thread-based designs.

- Can be vulnerable to two forms of denial of service - Can be vulnerable to two forms of denial of service
attacksattacks
� How?

– 46 – 15-441, Fall 2003

Attack #1

Overwhelm Server with ConnectionsOverwhelm Server with Connections
� Limited to FD_SETSIZE – 4 (typically 1020) connections

Defenses?Defenses?

– 47 – 15-441, Fall 2003

Attack #2: Partial Lines

� Client gets attention of server by sending partial line
� Server blocks until line completed

client 1 server client 2
connect

accept

call readlineb

connect Client 2 blocks
waiting to complete
its connection
request until after
lunch!

Server blocks
waiting for “\n ”
from Client 1

User types
“Hello world\n ” Client sends

“Hello world ”

select detects
input ready

– 48 – 15-441, Fall 2003

Flaky Client

� Sends everything up to newline
� Doesn’t send newline until user types another line
� Meanwhile, server will block
�

 while (Fgets(buf, MAXLINE, stdin) != NULL) {
Rio_writen(clientfd, buf, strlen(buf)-1);
Fgets(buf, MAXLINE, stdin); /* Read & ignore line */
Rio_writen(clientfd, "\n", 1);
Rio_readlineb(&rio, buf, MAXLINE);
Fputs(buf, stdout);

 }

– 49 – 15-441, Fall 2003

Implementing a Robust Server

Break Up Reading Line into Multiple Partial ReadsBreak Up Reading Line into Multiple Partial Reads
� Every time connection selected, read as much as is available
� Construct line in separate buffer for each connection

Must Use Unix ReadMust Use Unix Read
� read(int fd, void *buf, size_t maxn)

� Read as many bytes as are available from file fd into buffer
buf .

� Up to maximum of maxn bytes

Cannot Use RIO VersionCannot Use RIO Version
� rio_readn(int fd, void *buf, size_t n)

� Read n bytes into buffer buf .
� Blocks until all n read or EOF

– 50 – 15-441, Fall 2003

Robust Server

/*
 * echoserverub.c - A robust, concurrent echo server based on select
 */
#include "csapp.h"

typedef struct { /* represents a pool of connected descriptors */
 int maxfd; /* largest descriptor in read_set */
 fd_set read_set; /* set of all active descriptors */
 fd_set ready_set; /* subset of descriptors ready for reading */
 int nready; /* number of ready descriptors from select */
 int maxi; /* highwater index into client array */
 int clientfd[FD_SETSIZE]; /* set of active descriptors */
 char clientbuf[FD_SETSIZE][MAXBUF]; /* set of read buffers */
 int clientcnt[FD_SETSIZE]; /* Count of characters in buffers */
} pool;

int byte_cnt = 0; /* counts total bytes received by server */

– 51 – 15-441, Fall 2003

Robust Server Loop
void check_clients(pool *p)
{
 int i, connfd, n;
 for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {

connfd = p->clientfd[i];
char *buf = p->clientbuf[i]; /* Private buffer */
int cnt = p->clientcnt[i]; /* Number of chars read so far */
if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) {
 p->nready--;
 if ((n = Read(connfd, buf+cnt, MAXBUF-cnt)) != 0) {

byte_cnt += n; cnt += n;
if (buf[cnt-1] == '\n') {
 Write(connfd, buf, cnt); /* End of line */
 p->clientcnt[i] = 0;
} else
 p->clientcnt[i] = cnt;

 }
} else { ... }

 }
}

– 52 – 15-441, Fall 2003

Conceptual Model

Maintain State Machine for Each ConnectionMaintain State Machine for Each Connection
� First Version: State is just identity of connfd
� Second Version: State includes partial line + count of

characters

SelectSelect Determines Which State Machine to Update Determines Which State Machine to Update
� First Version: Process entire line
� Second Version: Process as much of line as is available

Design IssueDesign Issue
� Must set granularity of state machine to avoid server

blocking

– 53 – 15-441, Fall 2003

For More Information
W. Richard Stevens, W. Richard Stevens, Unix Network Programming: Unix Network Programming:

Networking APIs: Sockets and XTINetworking APIs: Sockets and XTI , Volume 1, , Volume 1,
Second Edition, Prentice Hall, 1998.Second Edition, Prentice Hall, 1998.
� THE network programming “bible”.

Complete versions of original echo client and server Complete versions of original echo client and server
are developed in are developed in Computer SystemsComputer Systems :: A A
Programmer’s PerspectiveProgrammer’s Perspective ..
� Available from csapp.cs.cmu.edu

� You may compile and run them for yourselves to see how
they work.

� Feel free to borrow any of this code.
� But be careful---it isn’t sufficiently robust for our

programming assignments
» Most routines exit when any kind of error encountered

