
Simulation Environment Overview

15-441 Project 2, Fall 2004

1 Overview

In this document, we describe the simulation environment which you will be using in project 2 for
this class. The simulator implements the basic components of an operating system kernel, as well
as the socket, transport, link and physical layers. You will be responsible for adding network layer
to the kernel. The details of your project assignments can be found in the project handout.

Communication API

Transport Layer

Network Layer

Link Layer

Physical Layer

Application

Kernel
Communication API

Transport Layer

Network Layer

Link Layer

Physical Layer

Application

Kernel

Node 1

Node 2 Node 3

Kernel

Physical Layer

Link Layer

Network Layer

Figure 1: Logical view of Simulator: Applications run on simulated nodes.

Figure 1 shows a logical picture of a sample simulated network, whereas Figure 2 shows the
real picture. In the logical view of the simulator, each node has its own operating system kernel,
and the applications on the node run on this kernel. In reality, however, each node in the network
is a separate UNIX process running on the real OS kernel. An application running on top of a node
is a UNIX process separate from the kernel process. The fact that each node is implemented as a
separate process enables you to simulate communications between nodes even though all the nodes
are actually running on the same machine. Applications are implemented as separate processes so
that they can be started after the simulation is already running (i.e. the kernel on each node is
running) and so that more than one application can be run on the same node.

In the real world, user applications invoke kernel services via special a special ’trap’ instruction
which suspends execution of the user program and switches to executing the kernel. The kernel

1

Operating System

Node 1

Node 2

Node 3

App 1

App 2

Figure 2: Real view of Simulator: Each node is implemented as a separate UNIX process. Each
application running on a node is in a separate process.

can read and write the user’s memory to fetch system call parameters and store the results of the
system call. In the simulator, user applications and the kernel on the nodes communicate using
Inter-Process Communication (IPC) primitives.

Each node has its own operating system kernel. Some nodes utilize all the layers of the network
stack implemented in your kernel, and there are applications running on top of them (Nodes 2 and
3 in the figure). These nodes represent end-systems or communication endpoints. Other nodes,
e.g. Node 1, only use the physical, link and network layers of the network stack. These nodes are
routers. They are only responsible for forwarding packets, and since forwarding is a function pro-
vided by the network layer, they do not need to use the layers above the network layer. Endpoints
on the other hand, do need to have all layers of the network stack since packets that are sent and
received by the application layer need to undergo processing by all layers below the application
layer.

In this handout, we will use $PDIR to denote the project directory. The project directory for
Project 2 will be: /afs/cs.cmu.edu/academic/class/15441-f04/project2/.

2 Building the kernel and running a network simulation

The support code for your projects provides an environment that emulates a simple machine with
hardware-level network devices and a system call interface. The support code also includes a
socket layer and a simple transport layer implementation. The support code is provided to you
as a set of libraries: libkernel.a, libmachine.a, libksocket.a, and libuser.a. The first
three of these are to be linked with your network layer code to build a kernel. The last of these,
libuser.a, is to be linked with the applications that run on your kernel.

When your simulated kernel boots, the support code will initialize its data structures, such as
those representing the “hardware”, and then call the kernel init() routine. The kernel init()
routine provided in the templates includes code for initializing the transport layer. In this function,
you will add any initialization code that is necessary for your portion of the kernel. This would
include things like telling the support code which function it should call when it receives a packet,
and telling the support code which functions it should call when the user program wants to send
data over the network. (We discuss both in more detail later.)

You will be using the simulator to simulate a network. Typically, a network consists of more
than one node (otherwise it is not very interesting). A sample network configuration is shown in
Figure 3.

A script $PDIR/template/startkernel.pl will be provided to help you bring your net-
work up when you start the simulation. This script reads a network configuration file (see Sec-
tion 2.1) that you specify, and launches the appropriate number of kernels. Each kernel is started in

2

R3R2

R1
1

1

2

1

Figure 3: A sample network configuration.

its own xtermwindow. An optional second argument (debug) may be specified to startkernel.pl
so that it runs each kernel within gdb. If you don’t specify this option, problems may be difficult
to debug since when a kernel crashes, the xterm window corresponding to that kernel will close.

2.1 Network configuration file

As mentioned above, you need to create a network configuration file to run a simulation. This con-
figuration file specifies each node in the network along with all of its interfaces and their respective
addresses, as well as all the links that exist between each node and other nodes in the network.

We use the network from Figure 3 to illustrate how network configuration files are built. Inter-
face 1 on node R1 is connected to interface 1 on node R2, and interface 2 on node R1 is connected
to interface 1 on node R3.

The network configuration file for this network is the following:

Configuration for Router 1
Router 1 {

1 1.1.1.1 255.255.255.0
2 1.1.2.1 255.255.255.0
1:1 2:1
1:2 3:1

}

Configuration for Router 2
Router 2 {

1 1.1.1.2 255.255.255.0
2:1 1:1

}

Configuration for Router 3
Router 3 {

1 1.1.2.2 255.255.255.0
3:1 1:2

}

As usual, lines that start with a “#” are comments and will be ignored by the simulator. The
configuration file is comprised of a number of clauses, one for each node in the network (i.e. Router
1, Router 2, ...). The clause for a node begin with a description of the interfaces on that node. For
each interface, we specify the interface number (which must be greater than zero, and less than 17),
the IP address, and the netmask.

After we have described the interfaces for a node, we describe how these interfaces are con-
nected to other nodes. The notation X:Y refers to interface Y on node X. Thus, the line “1:1 2:1”
in the configuration entry for node R1, shown above, specifies that interface 1 on R1 should be
connected to interface 1 on R2. For this course, all links will be point-to-point. Hence you should
make sure not to connect a single interface to multiple remote interfaces.

3

Note that in this configuration, R2 and R3 are actually end points, not routers. However, the
simulator requires the word “Router” for each node in the configuration file.

This sample configuration file is provided in $PDIR/template/network.cfg. You can mod-
ify the sample or create your own configuration for testing purposes.

3 Building and running user programs

User programs run on the simulated nodes. Each user program is run as a separate user process
as shown in Figure 1. All user programs used with the simulator must be linked against the user
library we provide (see the template Makefile in $PDIR/utils for more details). In most re-
spects, the user programs that run with the simulator are just like user programs that run with the
OS’s network stack. There are, however, three important differences:

1. The entry point for the user programs must be named Main() instead of main(). Our sup-
port code defines main(). After the support code has completed its initialization, it will
invoke your Main() function. The interface for Main() function is exactly the same as
main(). That is, the usual argc and argv are still there.

2. User programs must be run with “-n i” as the first argument. This argument is to specify
that this user program should be run on node i. Note that the Main() function will not see
this argument (i.e. the simulator will strip this argument before calling Main()).

3. Calls to the socket API must use capitalized names rather than standard names. For exam-
ple, when your user program wants to create a socket, it must call Socket() rather than
socket().

4 Interacting with the link layer

In your projects you will be adding a network layer to the simulator. The network layer transmits
and receives packets from the network with the help of the link layer. In this section, we describe
the interface between the link layer and the network layer.

4.1 Initialization

Before your network layer can receive any packets from the link layer, you must tell the link layer
which function it should call when packets arrive. To do so, use hw interfaces register().
The prototype for this function is given in $PDIR/include/hw interfaces.h.

4.2 The network interface list

As explained earlier, the kernel boot code reads the network configuration file (Section 2.1) and cre-
ates a list of networking interfaces on the node. In this subsection, we describe this data structure,
in case your network layer needs to access it.

Each element on this list is a struct ifnet defined in $PDIR/include/if.h:

struct ifnet {
TAILQ_ENTRY(ifnet) if_next;

int if_index; /* interface number */
struct sockaddr_in if_addr; /* address of interface */
struct sockaddr_in if_netmask; /* netmask of if_addr */
int if_mtu; /* MTU of interface */

void (*if_start)(struct ifnet *ifp, struct pbuf *p);

struct hwif *if_hwif; /* hardware device */
};

4

The head of this list can be accessed by calling the function ifnet listhead() provided by
the simulator. The TAILQ ENTRY() macro is a macro defined in $PDIR/include/queue.h that
is useful for creating linked lists. Iterating over the interface list can be done as follows:

struct ifnet *ifp = ifnet_listhead();

for(; ifp; ifp = TAILQ_NEXT(ifp, if_next)) {
printf(‘‘interface index: %d\n’’, ifp->if_index);

}

4.3 Handing packets to the network interface for transmission

Once your forwarding layer has completely built a packet and has determined which interface the
packet should be sent out on, the forwarding layer can send this packet by calling the if start()
routine of the appropriate interface. (The prototype for if start() is given in $PDIR/include/if.h).
For example, if your forwarding layer has consulted the forwarding table, and determined that the
current packet should be forwarded through interface 1, you would do the following:

struct ifnet *ifp;
char *buffer; /* packet to be sent */
int buflen;

/* ifp = code to find interface 1 here */

ifp->if_start(ifp, buffer, buflen); /* send the packet */

Note that the link layer will free the buffer after it has finished transmission of the packet. For
this reason, you must not pass the link layer a pointer to stack memory, or free the buffer yourself.

4.4 Getting packets received by the network interface

Assuming you have initialized the link layer properly, the link layer will call one of your functions
(call it the “input handler”) whenever a network interface receives a packet from the network. As
indicated by the prototype of the initialization function (hw interfaces register()), the link
layer will call your input handler with three arguments: a struct ifnet indicating on which
interface the packet was received, a char * pointing to the start of the packet, and an int giving
the length of the packet. Note that your code is responsible for freeing the buffer.

In the template given in $PDIR/template/kernel, the routine ip if input() is registered
as the input handler with the link layer. ip if input() converts the char* data to struct
pbuf *pkt and calls the ip input() routine. Your ip input() routine should verify the IP
headers, and send the packet to appropriate transport layer, or forward it to another node. The pro-
totype of ip if input() and ip input() is given in $PDIR/template/kernel/ipforward.h.
$PDIR/include/util.h has routines to convert char* to struct pbuf* and vice versa.

4.5 The pbuf structure

A packet sent or received by an application is processed by several different layers in the network
stack. In real BSD-style implementations, an mbuf structure is used for passing the packet between
the different layers. In projects 2, you will be using a pbuf structure for building and passing
packets between network stack layers. The pbuf structure is simplified version of the BSD mbuf.

The definition of the pbuf structure is the following (given in $PDIR/include/pbuf.h):

struct p_hdr {
struct pbuf *ph_next; /* next buffer in chain */
struct pbuf *ph_nextpkt; /* next chain in queue/record */
caddr_t ph_data; /* location of data */
int ph_len; /* amount of data in this mbuf */
int ph_type; /* type of data in this mbuf */
int ph_flags; /* flags; see below */

5

};

struct pbuf {
struct p_hdr p_hdr;
char p_databuf[PHLEN];

};
#define p_next p_hdr.ph_next
#define p_nextpkt p_hdr.ph_nextpkt
#define p_data p_hdr.ph_data
#define p_len p_hdr.ph_len
#define p_type p_hdr.ph_type
#define p_flags p_hdr.ph_flags
#define p_dat p_databuf

The pbuf’s must be allocated and deallocated using the routines p get() and p free() de-
clared in $PDIR/include/pbuf.h. Since a pbuf contains less than 512 bytes of data (PHLEN is
defined as 512 minus header length), an MTU-sized packet (1500 bytes in your projects) will con-
sist of 4 pbuf structures linked together by the p next field in each pbuf – this is called a pbuf
chain. The p nextpkt field can be used to link multiple packets together on a queue. By con-
vention, only the first pbuf in a pbuf chain should be used to link to another pbuf chain (through
p nextpkt).

Figure 4: pbuf: A 48-byte IP packet spread out over 2 pbuf structures. There is a 20-byte IP header,
an 8-byte UDP header, and 20-bytes of user data. The IP header starts at the beginning of the first
pbuf’s p databuf, while the UDP header and data bytes start in the middle of the second pbuf’s
p databuf. Placing data in the middle of p databuf and modifying p data to point to it is a clever
way to leave space for headers, or to push and pop headers, without requiring additional pbufs.

The field p data points to the location where the packet data starts within the p databuf
buffer. Why implement pbufs this way? Suppose your transport layer has built a UDP packet
with 20 bytes of data and an 8-byte UDP header. Before this packet gets sent on the wire, it will
have to go through network and link layer processing. If you place the data at the beginning of the
pbuf, the network layer will have to allocate a new pbuf in which to store the 20-byte IP header
and prepend this pbuf to the packet. However, if you were clever enough to leave 20 bytes of
space at the beginning of the p databuf buffer, you could simply subtract 20 from the value of
p data and then copy the 20-byte IP header to the address indicated by this pointer. An example
of a packet consisting of multiple pbuf structures is shown in Figure 4.

6

The field p len is the length of data contained in the pbuf; it is not the total length of the packet.
p type is managed by the pbuf allocation code and p flags is presently not used at all by the
kernel.

The prototype for struct pbuf and other utility functions are given in $PDIR/include/pbuf.h.
Some of the routines which you might find useful are p get(), p free(), p pktlen(), p freep(), and
p copyp().

5 Interacting with the transport layer

The transport layer sits between the socket layer and the network layer. The support code provides
a simple implementation of TCP and UDP. In this section, we describe the interface between the
transport layer and the network layer.

5.1 Handing packets to the transport layer

Once your forwarding layer has decided that the packet is destined to this host, it should send it
to the appropriate transport layer. For TCP packets, the protocol filed in the IP header is set
to IPPROTO TCP, and for UDP packets, the field is set to IPPROTO TCP. The forwarding layer can
send the packet to TCP by calling the mrt receive() routine. The prototype for mrt receive()
is given in $PDIR/include/mrt.h. Similarly, it can pass the packet to UDP by calling the
udp receive() routine. The prototype for udp receive() is given in $PDIR/include/udp.h.

5.2 Getting packets from the transport layer

When a user program wants to transmit data, the transport layer will receive the data through the
socket layer. The transport layer will then pass the packet to the forwarding layer by calling the
ip output() routine. The prototype for ip output() is given in $PDIR/template/kernel/ipforward.h.

You must implement the ip output() routine. Your ip output() routine should set the
appropriate fields in the IP header, and then send the packet on the appropriate interface after
looking up the forwarding table.

Note that if the IP NOROUTE bit is set in the flags parameter, the behavior of ip output()
changes significantly. Instead of looking up the forwarding table to find out which interface to send
the packet on, it looks up the network interface list described in section 4.2. It uses the source IP
address and the netmask of each interface along with the destination IP address to choose which
interface to send the packet on. As explained in the project handout, your routing daemon will use
this option.

6 Socket API

The socket layer provides an API (application program interface) for user programs to access the
networking functionality of the kernel. For user programs to interface to the simulator, you can use
the socket API. The prototypes are defined in $PDIR/include/Socket.h (this header file should
be included by user programs, not your kernel).

Observe that the first letter of each call is capitalized. This is to distinguish them from the actual
Linux system calls, which will go into the Linux kernel upon invocation. All your user programs
will be linked against a library provided by us so that when they invoke these capitalized calls, the
corresponding handlers in our simulated kernel (and not the Linux kernel) are invoked.

The simulator Socket API supports Socket(), Close(), Bind(), Connect, Accept(), Read(), and
Write() functions for TCP. Similarly, it supports Socket(), Close(), Sendto(), Recvfrom() and Setsock-
opt() functions for UDP.

7

6.1 The Socket() call

The Socket() call accepts three arguments: family, type, and protocol. It supports the following
three combinations of family and type: (1) AF INET/SOCK STREAM: this combination specifies that
the user wants to create a TCP socket, (2) AF INET/SOCK DGRAM: this combination specifies that
the user wants to create a UDP socket, and (3) AF ROUTE/SOCK RAW: this combination specifies
that the user wants to create a routing socket.

6.2 The Accept() call

Our Accept() differs from the standard accept in one significant way. Accept() returns 0 (in-
stead of a new file descriptor as in UNIX) upon success, and -1 upon failure. Thus, Accept() does
not create a new file descriptor (unlike the Berkeley Socket specification), and uses the same file
descriptor for the subsequent socket calls.

Given the semantics of our Accept() call, and the lack of a Select() call, it is infeasible for a
single application process running on our simulator to service multiple connections in a reasonable
way. Thus you should not attempt to do this.

6.3 The Recvfrom() call

By default, Recvfrom() is blocking: when a process issues a Recvfrom() that cannot be com-
pleted immediately (because there is no packet), the process is put to sleep waiting for a packet to
arrive at the socket. Therefore, a call to Recvfrom() will return immediately only if a packet is
available on the socket. When the MSG NOBLOCK bit is set in the flags argument of Recvfrom(),
Recvfrom() does not block if there is no data to be read, but returns immediately with a return
value of 0 bytes. MSG NOBLOCK is defined in $PDIR/include/systm.h.

You can find some user level programs written using the Socket API in $PDIR/utils.

7 Routing

In order to forward packets, your forwarding layer will need to know which packets will be sent
through which links. The simulator provides a way for user space programs to provide the for-
warding information to the kernel. As you are responsible for implementing the kernel forwarding
code, this section describes the interface that user programs will use to provide the kernel with
forwarding information.

These programs communicate with your kernel via a “routing socket”. The user programs will
call Socket(AF ROUTE, SOCK RAW, 0) to obtain the routing socket. They will then add entries
to the forwarding table by writing messages to the routing socket.

The format of the messages written by the user programs is defined in $PDIR/include/route.h,
and given below. The user programs will write a message of type struct rt msghdr to the rout-
ing socket.

struct rt_info {
struct sockaddr_in rti_dst; /* destination, only sin_addr.s_addr

field is used in project */
u_int32_t rti_index; /* interface index */

};

struct rt_msghdr {
u_int16_t rtm_msglen;
u_int16_t rtm_type; /* Message Types */
u_int32_t rtm_errno; /* set by the kernel, if error */
struct rt_info rtm_rti; /* routing info */

};

8

/* Message Types */
#define RTM_ADD 0x001 /* Add Route */
#define RTM_DELETE 0x002 /* Delete Route */
#define RTM_CHANGE 0x003 /* Change Metrics or flags */

The following values of the rtm type field of the rt msghdr structure are supported: (1)
RTM ADD: add an entry to the routing table, (2)RTM DELETE: delete an entry from the routing table,
and (3)RTM CHANGE: change an entry in the routing table.

You can find an example user space program ($PDIR/utils/fdconfig.c) which uses rout-
ing sockets to provide forwarding information to the kernel.

8 Kernel utility functions

Here we describe some utility functions provided by our simulated kernel.

8.1 Timers

In implementing the project, you may need to use timers. For this reason, our support code pro-
vides a timer facility, as defined in $PDIR/include/systm.h:

typedef void (timeout_t)(void *);
typedef timeout_t *timeout_func_t;

void timeout(timeout_t ftn, void *arg, register int ticks);

int untimeout(timeout_t ftn, void *arg);

1. The timeout() function allows you to schedule a routine to be executed a certain number
of ticks into the future. A tick in our support code is 500 ms. The first argument (ftn) is the
function to be called, arg is a pointer to the argument (if any) that the function will use, and
ticks is the number of 500 ms intervals from the present time that will expire before this
function is invoked.

2. The untimeout() routine allows you to cancel an event that has been scheduled with timeout().
The pointer values of the ftn and arg parameters that are passed to untimeout()must ex-
actly match those were passed to timeout() previously. If function returns 1 if a timer was
cancelled, and 0 otherwise (for example, if the specified timer did not exist).

8.2 How to panic

The simulated kernel provides the function panic(char * fmt, ...), which causes the kernel
to immediately stop running and print out the message passed to it as an argument.

9

