15-441 Computer Networks

Ethernet and Switch Design

Professor Hui Zhang

hzhang@cs.cmu.edu

Ethernet Packet Size/Cable Length

- Setting the set of the set of
- Section 2 Sec
- Section 2 Construction Section 2 Construction 2

Collision Detection

Time

Collision Detection: Implications

- All nodes must be able to detect the collision.
 - Any node can be sender
- The implication is that either we must have a short wires, or long packets.
 - Or a combination of both

Minimum Packet Size

LAN length = $(min_frame_size)^{(light_speed)/(2*link_rate)} = (8*64b)^{(2*10^8mps)/(2*10^7 bps)} = 5.12 km$

Summary: Minimum Packet Size

Why put a minimum packet size?

Give a host enough time to detect collisions

- A host should be able to detect collision before it finishes the transmission of a packet
- In Ethernet, minimum packet size = 64 bytes (two 6-byte addresses, 2-byte type, 4-byte CRC, and 46 bytes of data)
- If host has less than 46 bytes to send, the adaptor pads (adds) bytes to make it 46 bytes

Higher Speed Ethernet

What need to be changed in the Ethernet protocol to make it run 100Mbps?

802.3u Fast Ethernet

- Apply original CSMA/CD medium access protocol at 100Mbps
- Must change either minimum frame or maximum diameter: change diameter
- Requires
 - 2 UTP5 pairs
 - 4 UTP3 pairs
 - 1 fiber pair
- * No more "shared wire" connectivity.
 - Hubs and switches only

802.3z Gigabit Ethernet

***** Same frame format and size as Ethernet.

- This is what makes it Ethernet
- * Full duplex point-to-point links in the backbone are likely the most common use.
 - Added flow control to deal with congestion
- Choice of a range of fiber and copper transmission media.
- * Defining "jumbo frames" for higher efficiency.

Repeater/Hub/Switch

Why do we need the following devices?

- Repeaters
- Hubs
- Switches

***** What are the differences between them?

Internetworking

There are many different devices for interconnecting networks.

Repeaters

- Used to interconnect multiple Ethernet segments
- Merely extends the baseband cable
- Amplifies all signals including collisions

Building Larger LANs: Bridges

- * Bridges connect multiple IEEE 802 LANs at layer 2.
 - Only forward packets to the right port
 - Reduce collision domain compared with single LAN
- In contrast, hubs rebroadcast packets.
- Implications:
 - Performance
 - Distance
 - Type of networks

Ethernet Switches

- ✤ Bridges make it possible to increase LAN capacity.
 - Packets are no longer broadcasted they are only forwarded on selected links
- Ethernet switch is a special case of a bridge: each bridge port is connected to a single host.
 - Can make the link full duplex (really simple protocol!)
 - Full duplex vs. half duplex vs simplex
 - What are the original CSMA/CD Ethernet?
 - Simplifies the protocol and hardware used (only two stations on the link) – no longer full CSMA/CD
 - Can have different port speeds on the same switch
 - Unlike in a hub, packets can be stored (what is the benefit?)
 - An alternative is to use cut through switching (what is the benefit?)

More Efficient Encoding

- Ethernet: Manchester
- Fast Ethernet: 4B/5B
 - Borrowed from FDDI

✤ Gigabit Ethernet: 8B/10B

Borrowed from HIPPI

* 10Giga Ethernet: 64/66B

Borrowed from SONET

Issues

- Clock recovery
- DC balance
- Clock rate vs. bit rate

Longer Distance Ethernet

- GbE and 10GbE can run over one of the wavelength of a DWDM link, whose distance can be extended by optical amplification
- Can we have a national Ethernet network?

Wireless Ethernet (802.11)

Why CSMA/CD is used in Ethernet but not in 802.11?

Switching: Why?

- Distance (coordination delay; propagation limitation)
- Number of hosts (collisions; shared bandwidth; address tables)
- Single link technology (cannot mix optical, wireless, ...)

Internetworking

•••

 $\dot{\bullet}$

- Distance
- Performance
- Multiple types of links and networks

Big Ethernet Network

Hui Zhang

Scalability Issues with Switched Ethernet

Broadcast

- Still broadcast in switched Ethernet network?
- * Size of forwarding table
- Not being able to utilize all links
 - Only links on spanning tree can forward packets

Structure of A Generic Communication Switch

- Switches
 - circuit switch
 - Ethernet switch
 - ATM switch
 - IP router

Switch fabric

- high capacity interconnect
- Line card
 - address lookup in the data path (forwarding)
- Control Processor
 - load the forwarding table (routing or signaling)

Addressing and Look-up

Flat address

- Ethernet: 48 bit MAC address
- ATM: 28 bit VPI/VCI
- DS-0: timeslot location
- Limited scalability
- High speed lookup

Hierarchical address

- IP <network>.<subnet>.<host>
- Telephone: country.area.home
- Scalable
- Easy lookup if boundary is fixed
 - telephony
- Difficult lookup if boundary is flexible
 - longest prefix match for IP

Datagram: Layer 2 (e.g., Ethernet)

- Flat address space (no structure)
- Forwarding table:

E.g. 1 **Datagram: Layer 3 (e.g., IP)** E.g. 2 & L3-network (e.g., IP) E.g. 3 Topological structure – match prefix Either fixed prefix length or longest match 10100111 11010001 10100000 В 1101 11010000 A' Β' Fixed Longest D Α Other 0100000 11100000 11010101 11001000 1100 11001101 С C' 11001001

4 bits at A, 1 at B, 3 at C \rightarrow A = LPM 4 bits at A' \rightarrow A' = EM

Datagram: Layer 3 (e.g., IP)

11001001 matches

3 bits at A, 1 at B, 7 at C \rightarrow C = LPM

E.g. 2

Datagram: Layer 3 (e.g., IP)

01100101 matches 0 bit at A' \rightarrow B'

0 bit at B, 0 at C, 2 at D \rightarrow D = LPM

Virtual Circuit

Connection setup establishes a path through switches

- A virtual circuit ID (VCI) identifies path
- Uses packet switching, with packets containing VCI
- VCIs are often indices into per-switch connection tables; change at each hop

Techniques: Source Routing

Each packet specifies the sequence of routers (or of output ports) from source to destination

Control Plane

Installing entries in forwarding tables at all switches

- Forwarding tables need to be consistent so that packets go to the right destination
- ***** The Brain of a network
- Difficulties
 - Topology keeps on changing
 - Distributed computation

Control plane in different networks

- Ethernet: address learning and spanning tree
- Circuit network: routing + signaling
- IP network: routing

Examples: Cisco GSR - 12416

- WAN Router Large throughput; SONET links
- ✤ Up to 16 line cards at 10 Gbps each
- Crossbar Fabric
- Line Cards:

 port OC-192c
 port OC48c
 Many others
 (ATM, Ethernet, ...)

Examples: Juniper M160

- WAN Router Large throughput; SONET links
- * Crossbar Fabric
- Line Cards:

 port OC-192c
 port OC48c
 Many others
 (ATM, Ethernet, ...)

Capacity: 80Gb/s Power: 2.6kW

Examples: Cisco 7600

- * MAN-WAN Router
- Up to 128 Gbps with Crossbar Fabric
- * 10Mbps 10Gbps LAN Interfaces
- ✤ OC-3 to OC-48 SONET Interfaces
- MPLS, WFQ, LLQ, WRED, Traffic Shaping

Examples: Cisco Catalyst 6500

- * From LAN to Access
- * 48 to 576 10/100 Ethernet Interfaces
- * 10 GE, OC-3, OC-12, OC-48, AT
- * QoS, ACL
- * Load Balancing; VPN
- Up to 128Gbps (with crossbar)
- L4-7 Switching
- VLAN
- IP Telephony (E1, T1, inline-power Ethernet)
- **SNMP**, **RMON**

Examples: Extreme - Summit

- 48 10/100 ports
- * 2 GE (SX, LX, or LX-70)
- ✤ 17.5Gbps non-blocking
- * 10.1 Mpps
- Wire speed L2
- ✤ Wire speed L3 static or RIP
- ✤ OSPF, DVRMP, PIM, …

Examples: Foundry - ServerIron

- ✤ Server Load Balancing
- Transparent Cache Switching
- ✤ Firewall Load Balancing
- ✤ Global Server Load Balancing
- Extended Layer 4-7 functionality including URL-, Cookie-, and SSL Session ID-based switching
- Secure Network Address Translation (NAT) and Port address

Switching: Characteristics

Ports

Fast Ethernet, OC-3, ATM, …

* Protocols

 ST, Link Agg., VLAN, OSPF, RIP, BGP, VPN, Load Balancing, WRED, WFQ

* Performance

- Throughput: slot throughput, box throughput
 - Bits per second, packets per second
- Latency (where does it come from?)
- Reliability
- Power consumption

Architectures: Generic

- Input and output interfaces are connected through an interconnect
- A interconnect can be implemented by
 - Shared memory
 - low capacity routers (e.g., PC-based routers)
 - Shared bus
 - Medium capacity routers
 - Point-to-point (switched) bus
 - High capacity routers

Architectures: First Generation

Typically < 0.5Gbps aggregate capacity Limited by rate of shared memory

Slide by Nick McKeown

Architectures: Second Generation

Typically < 5Gb/s aggregate capacity Limited by shared bus

Slide by Nick McKeown

Hui Zhang

Architectures: Input Functions

* Packet forwarding: decide to which output interface to forward each packet based on the information in packet header

- examine packet header
- lookup in forwarding table
- update packet header

Architectures: Output Functions

* Buffer management: decide when and which packet to drop

Scheduler: decide when and which packet to transmit

Input Queues

- Only input interfaces store packets
- * Advantages
 - Easy to build
 - Simple algorithms
- Disadvantages
 - HOL blocking

Head-of-line Blocking

Suffering at input: packet cell at the head of an input queue cannot be transferred, thus blocking the following cells

Architectures: Output Queued

- Only output interfaces store packets
- * Advantage
 - Easy to design algorithms: only one congestion point

* Disadvantage

 Requires an output speedup Ro/C = N, where N is the number of interfaces → not feasible for large N

Architectures: Virtual Output Buffers

- ✤ OUT buffers at each input port
 - Complexity: Matching Problem

Figure from Prof. Varaiya's notes

Architectures: Combined IN/OUT

- Soth input and output interfaces store packets
- * Advantages
 - Easy to built
 - Utilization 1 can be achieved with limited input/output speedup (<= 2)
- Disadvantages
 - Harder to design algorithms
 - Two congestion points
 - Need to design flow control

Switching: Summary

- Switching needed for big networks
- Internetworking externality
- * Circuit
- Packet VC: QoS possible
- Packet Datagram
 - L2: Limited by flat address space
 - L3:
 - Exact Match: Easy lookup less efficient
 - Longest Prefix Match
- Switch functions: control and data
- Different Architectures:
 - cost vs. performance