
Exam Feedback
Mar. 8, 2006

TopicsTopics
� reading list
� finger client

Lxx_Exam

15-441
Computer Networking

– 2 – 15-441

Synchronization

TextbookTextbook
� Looking Backward / Forward

� Section 3.3 (ATM)
� Section 4.4 (Multicast), 4.5 (MPLS)
� Section 9.1 (DNS)

� The TCP Adventure
� Section 2.5 (Reliable Transfer)
� Chapter 5: Transport (ok if you read 5.3 lightly)
� Chapter 6: Congestion Control

– 3 – 15-441

Outline

The finger questionThe finger question

MythsMyths

– 4 – 15-441

finger

ProblemProblem
� Here is a finger client

� Connect to TCP port 79
� send username
� print out server's response

� Say what's wrong
� This was a “target-rich environment”

– 5 – 15-441

finger.c
int main(int argc, char *argv[])
{
 int s, len;
 struct sockaddr_in server;
 struct hostent *hp;
 char c, buf[8192];

 if (argc != 3) {
 fprintf(stderr, "usage: %s host user\n", argv[0]);
 exit(9);
 }
 server.sin_family = AF_INET;
 server.sin_port = 79;
 server.sin_addr.s_addr = gethostbyname(argv[1]);
 s = socket(AF_INET, SOCK_DGRAM, 0);
 bind(s, (struct sockaddr *) &server, sizeof (server));
 write(s, argv[2], strlen(argv[2]));
 write(s, "\r\n", 2);
 if ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);
 exit(0);
}

– 6 – 15-441

finger.c
int main(int argc, char *argv[])
{
 int s, len;
 struct sockaddr_in server;
 struct hostent *hp;
 char c, buf[8192];

 if (argc != 3) {
 fprintf(stderr, "usage: %s host user\n", argv[0]);
 exit(9);
 }
 server.sin_family = AF_INET;
 server.sin_port = 79;
 server.sin_addr.s_addr = gethostbyname(argv[1]);
 s = socket(AF_INET, SOCK_DGRAM, 0);
 bind(s, (struct sockaddr *) &server, sizeof (server));
 write(s, argv[2], strlen(argv[2]));
 write(s, "\r\n", 2);
 if ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);
 exit(0);
}

– 7 – 15-441

finger.c

 server.sin_family = AF_INET;
 server.sin_port = 79;
 server.sin_addr.s_addr = gethostbyname(argv[1]);
 s = socket(AF_INET, SOCK_DGRAM, 0);
 bind(s, (struct sockaddr *) &server, sizeof

(server));
 write(s, argv[2], strlen(argv[2]));
 write(s, "\r\n", 2);
 if ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);

Pretty much all of this is wrongPretty much all of this is wrong

– 8 – 15-441

finger.c

 server.sin_family = AF_INET;
 server.sin_port = 79;
 server.sin_addr.s_addr = gethostbyname(argv[1]);
 s = socket(AF_INET, SOCK_DGRAM, 0);
 bind(s, (struct sockaddr *) &server, sizeof

(server));
 write(s, argv[2], strlen(argv[2]));
 write(s, "\r\n", 2);
 if ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);

– 9 – 15-441

finger.c

BadBad
 server.sin_port = 79;

GoodGood
 server.sin_port = htons (79);

BadBad
 server.sin_addr.s_addr = gethostbyname(argv[1]);

GoodGood
 hp = gethostbyname(argv[1]);
 memmove(&server.sin_addr, hp->h_addr, hp->h_length);

– 10 – 15-441

finger.c

BadBad
 s = socket(AF_INET, SOCK_DGRAM, 0);

GoodGood
 s = socket(AF_INET, SOCK_STREAM , 0);

BadBad
 bind(s, (struct sockaddr *) &server, sizeof

(server));

GoodGood
 connect (s, (struct sockaddr *) &server, sizeof

(server));

– 11 – 15-441

finger.c

BadBad
 if ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);

GoodGood
 while ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);

– 12 – 15-441

Myths
Must close sockets before exit()Must close sockets before exit()

� If that were true we'd all be in big trouble!
� exit()'s job is to clean up process resources

sizeof(buf) == 4
� That's like a real problem...

� sizeof (pretty much any pointer) == 4 (on many machines)
� sizeof (array) is, well, the size of the array, in bytes

» “Doesn't work” for array parameters to a function
» They're actually pointers (call by reference), not arrays

write(stdout, ...)
� That's mixing metaphors – file descriptors aren't stdio

streams
� You could write write(fileno(stdout), ...)
� But if fileno(stdout) != 1 something very very odd is going on

– 13 – 15-441

Myths
Cannot use write() and read() on UDP socketsCannot use write() and read() on UDP sockets

� Sure you can!

read() doesn't block to wait for server responseread() doesn't block to wait for server response
� Yes, it does!

strings must be converted to network byte orderstrings must be converted to network byte order
� The network byte order for strings is:

� Send the first byte, then the second, then the third...
� “Byte order” is a problem when you have N-byte chunks

� Integer is a 4-byte chunk
� You could have a string byte-order problem with Unicode

� Out of scope

– 14 – 15-441

Myths
Buffer overflows!Buffer overflows!
 write(s, argv[2], strlen(argv[2]));

� We aren't putting anything into a buffer!
� Certainly not one of fixed size, without a length check

� The kernel might be putting these bytes in a buffer
� If the kernel does that unsafely we have problems beyond finger

� The finger server might carelessly handle this request
� But we can't save it from other people triggering that

 read(s, buf, sizeof (buf))
� Ok, this is a buffer
� But we are very carefully not overflowing it!

� If the kernel puts more than sizeof (buf) bytes into buf then we
have problems bigger than finger

Not all buffer uses are buffer overflows!Not all buffer uses are buffer overflows!

