15-441

Computer Networking

Exam Feedback
Mar. 8, 2006

Topics
- reading list
- finger client

Lxx_ Exam




Synchronization

Textbook

Looking Backward / Forward
Section 3.3 (ATM)
Section 4.4 (Multicast), 4.5 (MPLYS)
Section 9.1 (DNS)

- The TCP Adventure
Section 2.5 (Reliable Transfer)
Chapter 5: Transport (ok if you read 5.3 lightly)
Chapter 6: Congestion Control

—2- 15-441




Outline

The finger question
Myths

~3- 15-441




finger

Problem

Here is a finger client
Connect to TCP port 79
send username
print out server's response

Say what's wrong
This was a “target-rich environment”

15-441




finger.c

iInt main(int argc, char *argv([])

ints, len;

struct sockaddr_in server;
struct hostent *hp;

char c, buf[8192];

if (argc = 3) {
fprintf(stderr, "usage: %s host user\n”, argv|[0]);
exit(9);

server.sin_family = AF_INET,;
server.sin_port = 79;
server.sin_addr.s_addr = gethostbyname(argv[1));
s = socket(AF_INET, SOCK_DGRAM, 0);
bind(s, (struct sockaddr *) &server, sizeof (server));
write(s, argv[2], strlen(argv[2]));
write(s, "\r\n", 2);
if ((len = read(s, buf, sizeof (buf))) > 0)
write(1, buf, len);
exit(0);

_5_

15-441




finger.c

int main(int argc, char *argv/])

ints, len;

struct sockaddr _in server;
struct hostent *hp,

char c, buf[8192];

if (argc 1= 3) {
fprintf(stderr, "usage: %s host user\n”, argv[0]),
exit(9),

server.sin_family = AF_INET,
server.sin_port = 79;
server.sin_addr.s_addr = gethostbyname(argv[1));
s = socket(AF_INET, SOCK_DGRAM, 0);
bind(s, (struct sockaddr *) &server, sizeof (server));
write(s, argv[2], strlen(argv[2]));
write(s, "\r\n", 2);
if ((len = read(s, buf, sizeof (buf))) > 0)
write(1, buf, len);
exit(0),

—6-—

15-441




finger.c

server.sin_family = AF_INET;
server.sin_port = 79;

server.sin_addr.s_addr = gethostbyname(argv[1]);

s = socket(AF_INET, SOCK_DGRAM, 0):
bind(s, (struct sockaddr *) &server, sizeof
(server));
write(s, argv|[2], strlen(argv[2]));
write(s, "\r\n", 2);
iIf ((len = read(s, buf, sizeof (buf))) > 0)
write(1, buf, len);

Pretty much all of this is wrong

15-441




finger.c

server.sin_family = AF_INET;
server.sin_port = 79;

server.sin_addr.s_addr = gethostbyname(argv[1]);

s = socket(AF_INET, SOCK_DGRAM, 0);
bind(s, (struct sockaddr *) &server, sizeof
(server));
write(s, argv|[2], strlen(argv[2]));
write(s, "\r\n", 2);
If ((len = read(s, buf, sizeof (buf))) > 0)
write(1, buf, len);

15-441




finger.c

Bad

server.sin_port = 79;

Good

server.sin_port=htons ______ (79);

Bad

server.sin_addr.s_addr = gethostbyname(argv[1]);

Good
hp = gethostbyname(argv[1]);
memmove(&server.sin_addr, hp->h_addr, hp->h_length);

15-441




finger.c

Bad
s = socket(AF _INET, SOCK_DGRAM, 0);
Good
s = socket(AF _INET, SOCK_STREAM ___,0);
Bad
bind(s, (struct sockaddr *) &server, sizeof
(server));
Good
connect (s, (struct sockaddr *) &server, sizeof
(server));

— 10—

15-441




finger.c

Bad
iIf ((len = read(s, buf, sizeof (buf))) > 0)
write(1, buf, len);

Good
while ___ ((len = read(s, buf, sizeof (buf))) > 0)
write(1, buf, len);

~11- 15-441




Myths

Must close sockets before exit()
If that were true we'd all be in big trouble!
exit()'s job is to clean up process resources
sizeof(buf) ==
- That's like areal problem...

- sizeof (pretty much any pointer) == 4 (on many machines)
- sizeof (array) is, well, the size of the array, in bytes

» “Doesn't work” for array parameters to a function
» They're actually pointers (call by reference), not arrays

write(stdout, ...)

- That's mixing metaphors — file descriptors aren't stdio
streams

* You could write write(fileno(stdout), ...)
-12-- But if fileno(stdout) != 1 something very very odd is going on15-441




Myths

Cannot use write() and read() on UDP sockets
* Sure you can!

read() doesn't block to wait for server response
- Yes, it does!

strings must be converted to network byte order

- The network byte order for strings is:
- Send the first byte, then the second, then the third...

- “Byte order” is a problem when you have N-byte chunks
- Integer is a 4-byte chunk

* You could have a string byte-order problem with Unicode
- Out of scope

- 13- 15-441




Myths

Buffer overflows!
write(s, argv[2], strlen(argv[2])):

We aren't putting anything into a buffer!
- Certainly not one of fixed size, without a length check

- The kernel might be putting these bytes in a buffer
If the kernel does that unsafely we have problems beyond finger

- The finger server might carelessly handle this request
But we can't save it from other people triggering that

read(s, buf, sizeof (buf))
Ok, this is a buffer

But we are very carefully not overflowing it!

If the kernel puts more than sizeof (buf) bytes into buf then we
have problems bigger than finger

I\ﬁ)t all buffer uses are buffer overflows! _




