15-441 Computer Networks

Lecture 1

Dave Eckhardt Peter Steenkiste

(some slides courtesy of Hui Zhang)

1

- First things first
- Administrative overview
- Course non-goals
- Course goals
- Key problems
- Network performance concepts

CMU CS 15-441

First Things First

Please read Chapter 1 of the text

- To read ahead: most of Chapter 2, but ok to skip for now:
 - 2.5, Reliable Transmission
 - 2.8, Wireless
 - Also, don't kill yourself on 2.4, Error Detection

Please remind me to let you stretch

I haven't taught an 80-minute class in 1.5 years

People

Professors

Peter Steenkiste (www.cs/~prs)

Dave Eckhardt (www.cs/~davide)

Teaching assistants

Mike Cui

Josh Hailpern

David Murray

[watch this space]

Course secretary

4

Barbara Grandillo, Wean Hall 8018

CMU CS 15-441

Information Sources

Watch the course web page

http://www.cs.cmu.edu/~441

We expect you to read the syllabus!

Handouts, readings, ...

We expect you to read course bboards

Official announcements

academic.cs.15-441.announce

Questions/answers

academic.cs.15-441

CMU CS 15-441

5

Information Sources

Textbook

Peterson and Davie, *Computer Networks: A Systems Approach,* 3rd Edition, Morgan Kaufmann, 2003

CMU CS 15-441

Information Sources

- ~30 lectures
- ~3 paper homeworks
- 1-2 lab homeworks

Illustrate networking concepts

- Mid-term and final exams
- 1 programming assignment

How to use a network

2 programming projects

How to build a network

Homeworks	15%
Three projects	45%
Midterm exam	15%
Final exam	25%

Deadline means deadline

Deadline is 11:59 pm on the specified date

Policy on Collaboration

Working together is important

Discuss course material in general terms

Talk over tough debugging problems

Parts of the course must be done individually

Homeworks, midterm, final, 1st programming assignment

Projects are done by two-student teams

Learn how to collaborate

But each student must understand the entire project!

Web page has the details

Learn how to configure a Cisco router

That requires a class all by itself

Cisco teaches those classes

Our perspective will be broader

Become "Internet Experts"

The Internet will be our frequent *motivating example*

Our perspective will be broader

Why *not* an "Internet class"?

Is there anything other than the Internet?

Philosophy final exam question:

Define "Universe". Give two examples.

Why *not* an "Internet class"?

Is there anything other than the Internet?

Philosophy final exam question

Define "Universe". Give two examples.

- Yes Internet in the 1800's!
- Yes The secret network?
- [Yes What's next?]

Internet in the 1800's!?!

Tom Standage, <u>The Victorian Internet</u>

Telegraph!

Continent-spanning systems

Digital transmission of information

Crypto, code-breaking

Nerds

Attacks on the moral fiber of society

On-line dating (even an on-line wedding!)

Distributed message routing despite link outages

Lines cut by armies in wartime!

Many problems; solutions eerily similar

CMU CS 15-441

13

The Secret Network

With the Internet, who needs the phone system?

It's a "new era", etc.

One small detail...

From inception, Internet has been a phone system <u>application</u>! To connect two nodes, just ask your telco for a "circuit"...

...somehow there's always copper/fiber waiting for you...

...somehow when it breaks it gets fixed fast...

...somehow your circuit can terminate anywhere...

Somehow?

Course Goals

Think "the network way"

Distributed coordination is hard, let's go shopping

Learn how computer networks work

Problems, approaches, protocols, software

- Learn how to write network applications
- Hands-on understanding of network internals

Build a simple network in software

Selected Key Problems

- Two Generals
- Group Membership
- Scaling

Problem (formulated by Jim Gray?)

Two cooperating armies

Each size 2X

Separated by...

One opposing army

Size 3X

Idealized "combat" (think: Diplomacy, Risk, ...)

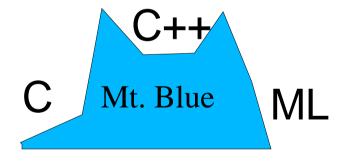
4X vs. 3X: probable win

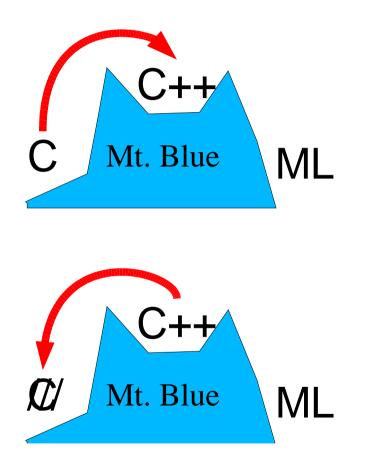
2X vs. 3X: certain loss

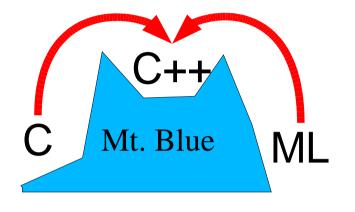
Problem

Two cooperating armies

Each size 2X


Separated by...


One opposing army


Size 3X

Idealized "combat"

4X vs. 3X: win 2X vs. 3X: lose

Necessity: <u>coordinated</u> attack

Armies can communicate via messenger

Protocol 0

C: "Attack at dawn!"

What if C's messenger is captured by C++?

Necessity: <u>coordinated</u> attack

Armies can communicate via messenger

Protocol 0

C: "Attack at dawn!"

What if C's messenger is captured by C++?

Protocol 1

C: "Attack at dawn! Ok?"

ML: "Ok!"

What if ML's messenger is captured?

Necessity: <u>coordinated</u> attack

Armies can communicate via messenger

Protocol 0

C: "Attack at dawn!"

What if C's messenger is captured by C++?

Protocol 1

C: "Attack at dawn! Ok?"

ML: "Ok!"

What if ML's messenger is captured?

Seemingly-trivial coordination is *impossible*!

Group Membership

Group of nodes on a network

Require distributed election of a "leader"

Sample solution

"Dstributed election" algorithm chooses among group members

If a node enters or leaves during election, re-start algorithm

Results

Works great for 10 nodes

Fails horribly for 1,000,000 nodes

If inter-node-join time approximates election time...

Election process never completes

Group Membership

Problem: "group membership" is undefined

By the time you can compute it, it's changed

Lots of algorithms will run into trouble

"To acquire a node number, add one to the largest current node number" – oops!

Key network functions must face this environment

Routing, naming

"DOD Standard Internet Protocol"

RFC 760, 1980: Addresses are fixed length of four octets (32 bits). An address begins with a one octet network number, followed by a three octet local address. This three octet field is called the "rest" field.

Result: 254 networks (surely enough!)

"DOD Standard Internet Protocol"

RFC 760, 1980: Addresses are fixed length of four octets (32 bits). An address begins with a one octet network number, followed by a three octet local address. This three octet field is called the "rest" field.

Result: 254 networks (surely enough!)

Subsequently revised to Class A/B/C networks

~16k "Class B" networks of ~64k hosts (CMU)

~4m "Class C" networks of ~255 hosts

"DOD Standard Internet Protocol"

RFC 760, 1980: Addresses are fixed length of four octets (32 bits). An address begins with a one octet network number, followed by a three octet local address. This three octet field is called the "rest" field.

Result: 254 networks (surely enough!)

Subsequently revised to Class A/B/C networks

~16k "Class B" networks of ~64k hosts (CMU)

~4m "Class C" networks of ~255 hosts

- Then "subnets", then "CIDR"
- "Surely enough" evaporates pretty fast!

Network Performance Concepts

Throughput

"How many things per unit time?"

Mb/s = megabits per second

KB/s = kilobytes per second

Latency

"How long until my message arrives?"

ms = millisecond (10⁻⁶), μ s = microsecond (10⁻⁹)

Reciprocal "in theory"

bits/second = (1/(seconds/bit))

Relationship much more complex

Hen Performance

Old riddle

"If a hen and a half lays an egg and a half in a day and a half, how long does it take to get a dozen eggs?"

Egg Latency

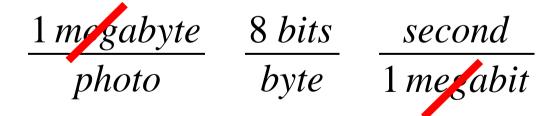
How long does it take for one hen to lay one egg?

Henhouse throughput (eggs per day)

Increases with number of hens

Does *not* mean you can build henhouse, get first egg in 1 hour

What is minimum time to 12 eggs?

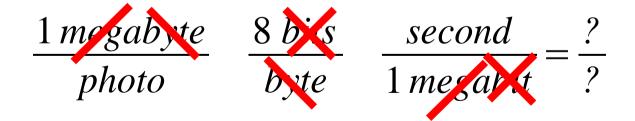

- 1-megabyte photo
- 1-megabit radio link
- How long?

- 1-megabyte photo
- 1-megabit radio link
- How long?

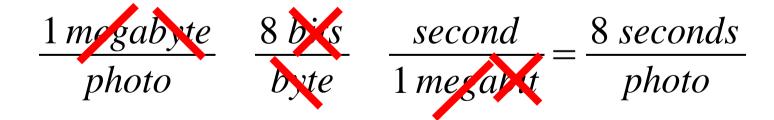
1 megabyte	8 bits	second
photo	byte	1 megabit


- 1-megabyte photo
- 1-megabit radio link
- How long?

1 megabyte	8 bits	second
photo	byte	1 megabit


- 1-megabyte photo
- 1-megabit radio link
- How long?

1 megabyte	8 bits	second
photo	byte	1 megabit


- 1-megabyte photo
- 1-megabit radio link
- How long?

1 megabyte	8 bits	second
photo	byte	1 megabit

- 1-megabyte photo
- 1-megabit radio link
- How long?

1 megabyte	8 bits	second
photo	byte	1 megabit

Two Problems

Small problem

Mega != Mega

Computer people: Megabyte (MB) = 2^{20} bytes

Network people: Megabit (Mb) = 10^6 bits

It's 8.4 seconds, not 8

Two Problems

Small problem

Mega != Mega

Computer people: MegaByte (MB) = 2^{20} bytes

Network people: Megabit (Mb) = 10^6 bits

It's 8.4 seconds, not 8

Big problem

I forgot to tell you... Mike lives on the Moon

(Extra credit: What is Mike's last name?)

It takes radio waves 1.3 seconds to get there

Message latency = sum of

Propagation delay (distance/lightspeed) Transmission time (size/throughput) Queue delay (ignore for now)

Message to Mike

Propagation delay is 1.3 seconds (one-way)

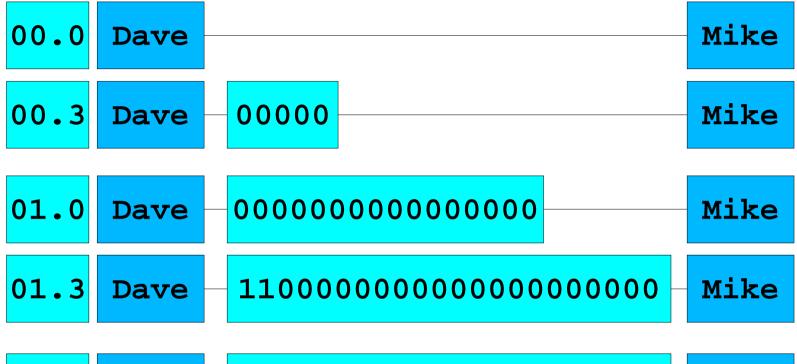
Also known as "link delay"

Transmission time is 8.4 seconds, total is 9.7 (121% of 8)

By the way: RTT (round-trip-time)

Time to send a 0-bit message there and back: 2.6 seconds

Propagation delay vs. transmission time


May vary widely

Earth-to-Moon is 1.3 seconds (<< 8.4)

Delay is a minor compared to transmission time

Can transmit part of message, receive back status

"Got that part ok" or "Oops, send it again"

08.4	Dave	00011111111111111111		Mike
08.3	Dave		0001111111111	Mike

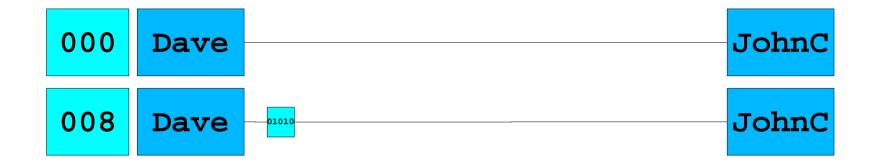
CMU CS 15-441

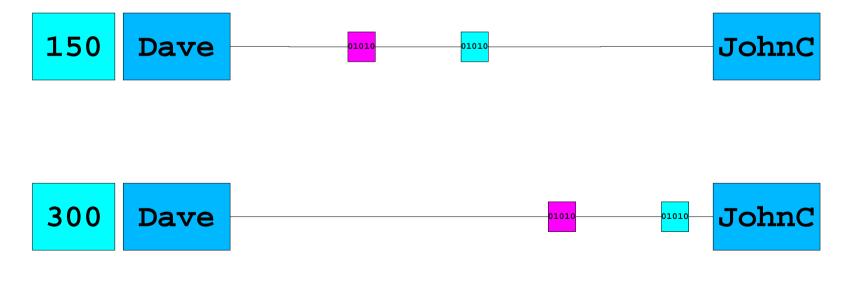
Propagation delay vs. transmission time

May vary widely

Earth-to-Moon is 1.3 seconds (<< 8.4)

Delay is a minor compared to transmission time


Can transmit part of message, receive back status


"Got that part ok" or "Oops, send it again"

Earth-to-Mars is 300-1225 seconds (>> 8.4)

Delay vastly exceeds transmission time

Link holds *multiple entire messages*

Bandwidth-delay product

megabits/second X link-delay

This many bits are always "in flight" / "queued in link"

What if Mike says "Stop!! My buffer is full!"?

One b-d product of bits are "in flight" to him already You will queue <u>another</u> b-d product before you hear his alert!

Message throughput (≠ link throughput)

How many messages per second can you send to Mike?

Depends on b-d product vs. message size

Depends on message protocol (= waiting protocol) you use

See text for more-dignified treatment

No hens, no Loonies, no Martians

Things to watch out for

Is "delay" one-way or round-trip?

Mega vs. mega, kilo vs. kilo

Do we mean link latency or message latency?

Do we mean link throughput or message throughput?

Things Which Aren't Throughput

Bandwidth

Properly, measured in Hertz

Difference between max & min frequency of transmission band

Routinely abused by CS people to mean "throughput"

Goodput

Used to mean "productive throughput"

Ignore "waste" if part of a message is transmitted multiple times

Back to the Internet

Another reason the Internet isn't perfect

Fatally overoptimized for single-planet case Will work to low-Earth orbit Efficiency problems talking to the Moon Forget about Mars

InterPlanetary Internet

http://www.ipnsig.org/

Summary

First things first

Read Chapter 1

Study socket-programming example as a refresher

Project 1 (individual) out Wednesday

Course non-goals, goals

"Networking perspective", Internet as running example

Key problems

Distributed coordination; scaling

Network performance concepts

Throughput vs. latency, ...

CMU CS 15-441