15-441 Computer Networks

Lecture 1

Dave Eckhardt
Peter Steenkiste

(some slides courtesy of Hui Zhang)

Outline

- First things first
- Administrative overview
- Course non-goals
- Course goals
- Key problems
- Network performance concepts

First Things First

Please read Chapter 1 of the text

- To read ahead: most of Chapter 2, but ok to skip for now:
 - 2.5, Reliable Transmission
 - 2.8, Wireless
 - Also, don't kill yourself on 2.4, Error Detection

Please remind me to let you stretch

I haven't taught an 80-minute class in 1.5 years

People

Professors

- Peter Steenkiste (www.cs/~prs)
- Dave Eckhardt (www.cs/~davide)

Teaching assistants

- Mike Cui
- Josh Hailpern
- David Murray
- [watch this space]

Course secretary

Barbara Grandillo, Wean Hall 8018

Information Sources

Watch the course web page

- http://www.cs.cmu.edu/~441
- We expect you to read the syllabus!
- Handouts, readings, ...

We expect you to read course bboards

- Official announcements
 - academic.cs.15-441.announce
- Questions/answers
 - academic.cs.15-441

Information Sources

Textbook

Peterson and Davie, Computer Networks: A Systems Approach,
 3rd Edition, Morgan Kaufmann, 2003

Information Sources

- ~30 lectures
- ~3 paper homeworks
- 1-2 lab homeworks
 - Illustrate networking concepts
- Mid-term and final exams
- 1 programming assignment
 - How to use a network
- 2 programming projects
 - How to build a network

Grading

Homeworks	15%
Three projects	45%
Midterm exam	15%
Final exam	25%

Deadline means deadline

Deadline is 11:59 pm on the specified date

Policy on Collaboration

Working together is important

- Discuss course material in general terms
- Talk over tough debugging problems
- Parts of the course must be done individually
 - Homeworks, midterm, final, 1st programming assignment
- Projects are done by two-student teams
 - Learn how to collaborate
 - But each student must understand the entire project!
- Web page has the details

Course Non-goals

Learn how to configure a Cisco router

- That requires a class all by itself
- Cisco teaches those classes
- Our perspective will be broader

Become "Internet Experts"

- The Internet will be our frequent motivating example
- Our perspective will be broader

Why not an "Internet class"?

Is there anything other than the Internet?

Philosophy final exam question:

Define "Universe". Give two examples.

Why not an "Internet class"?

Is there anything other than the Internet?

Philosophy final exam question

Define "Universe". Give two examples.

- Yes Internet in the 1800's!
- Yes The secret network?
- [Yes What's next?]

Internet in the 1800's!?!

Tom Standage, The Victorian Internet

- Telegraph!
- Continent-spanning systems
- Digital transmission of information
- Crypto, cracking
- Nerds
- Attacks on the moral fiber of society
- On-line dating (even an on-line wedding!)

Distributed message routing despite link outages

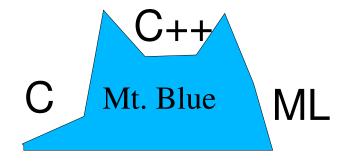
- Lines cut by armies in wartime!
- Many problems; solutions eerily similar

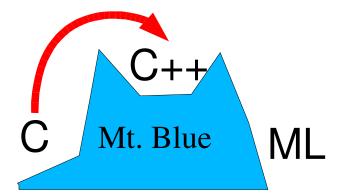
The Secret Network

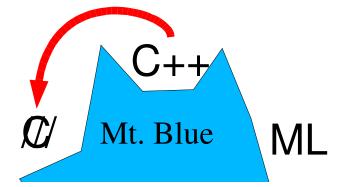
- With the Internet, who needs the phone system?
 - It's a "new era", etc.
- One small detail...
 - From inception, Internet has been a phone system <u>application!</u>
 - To connect two nodes, just ask your telco for a "circuit"...
 - ...somehow there's always copper/fiber waiting for you...
 - ...somehow when it breaks it gets fixed fast...
 - ...somehow your circuit can terminate anywhere...
 - Somehow?

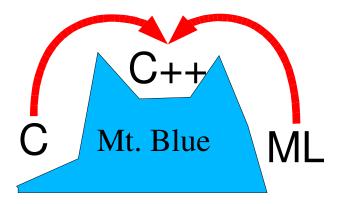
Course Goals

- Think "the network way"
 - Distributed coordination is hard, let's go shopping
- Learn how computer networks work
 - Problems, approaches, protocols, software
- Learn how to write network applications
- Hands-on understanding of network internals
 - Build a simple network in software


Selected Key Problems


- Two Generals
- Group Membership
- Scaling


- Problem (formulated by Jim Gray?)
 - Two cooperating armies
 - Each size 2X
 - Separated by...
 - One opposing army
 - Size 3X
- Idealized "combat" (think: Diplomacy, Risk, ...)
 - 4X vs. 3X: probable win
 - 2X vs. 3X: certain loss


Problem

- Two cooperating armies
 - Each size 2X
 - Separated by...
- One opposing army
 - Size 3X
- Idealized "combat"
 - 4X vs. 3X: win
 - 2X vs. 3X: lose

- Necessity: <u>coordinated</u> attack
 - Armies can communicate via messenger
- Protocol 0
 - C: "Attack at dawn!"
 - What if C's messenger is captured by C++?

Necessity: <u>coordinated</u> attack

Armies can communicate via messenger

Protocol 0

- C: "Attack at dawn!"
- What if C's messenger is captured by C++?

Protocol 1

- C: "Attack at dawn! Ok?"
- ML: "Ok!"
- What if ML's messenger is captured?

Necessity: <u>coordinated</u> attack

Armies can communicate via messenger

Protocol 0

- C: "Attack at dawn!"
- What if C's messenger is captured by C++?

Protocol 1

- C: "Attack at dawn! Ok?"
- ML: "Ok!"
- What if ML's messenger is captured?

Seemingly-trivial coordination is impossible!

Group Membership

Group of nodes on a network

Require distributed election of a "leader"

Sample solution

- "Dstributed election" algorithm chooses among group members
- If a node enters or leaves during election, re-start algorithm

Results

- Works great for 10 nodes
- Fails horribly for 1,000,000 nodes
 - If inter-node-join time approximates election time...
 - Election process never completes

Group Membership

- Problem: "group membership" is undefined
 - By the time you can compute it, it's changed
- Lots of algorithms will run into trouble
 - "To acquire a node number, add one to the largest current node number" – oops!
- Key network functions must face this environment
 - Routing, naming

Scaling

"DOD Standard Internet Protocol"

- RFC 760, 1980: Addresses are fixed length of four octets (32 bits). An address begins with a one octet network number, followed by a three octet local address. This three octet field is called the "rest" field.
- Result: 254 networks (surely enough!)

Scaling

"DOD Standard Internet Protocol"

- RFC 760, 1980: Addresses are fixed length of four octets (32 bits). An address begins with a one octet network number, followed by a three octet local address. This three octet field is called the "rest" field.
- Result: 254 networks (surely enough!)

Subsequently revised to Class A/B/C networks

- ~16k "Class B" networks of ~64k hosts (CMU)
- ~4m "Class C" networks of ~255 hosts

Scaling

"DOD Standard Internet Protocol"

- RFC 760, 1980: Addresses are fixed length of four octets (32 bits). An address begins with a one octet network number, followed by a three octet local address. This three octet field is called the "rest" field.
- Result: 254 networks (surely enough!)

Subsequently revised to Class A/B/C networks

- ~16k "Class B" networks of ~64k hosts (CMU)
- ~4m "Class C" networks of ~255 hosts
- Then "subnets", then "CIDR"
- "Surely enough" evaporates pretty fast!

Network Performance Concepts

Throughput

- "How many things per unit time?"
- Mb/s = megabits per second
- KB/s = kilobytes per second

Latency

- "How long until my message arrives?"
- ms = millisecond (10⁻⁶), µs = microsecond (10⁻⁹)

Reciprocal "in theory"

bits/second = (1/(seconds/bit))

Relationship much more complex

Hen Performance

Old riddle

"If a hen and a half lays an egg and a half in a day and a half, how long does it take to get a dozen eggs?"

Egg Latency

How long does it take for one hen to lay one egg?

Henhouse throughput (eggs per day)

- Increases with number of hens
- Does <u>not</u> mean you can build henhouse, get first egg in 1 hour
- What is minimum time to 12 eggs?

Radio a message to your friend Mike

- 1-megabyte photo
- 1-megabit radio link
- How long?

Radio a message to your friend Mike

- 1-megabyte photo
- 1-megabit radio link
- How long?

$$\frac{1 \, megabyte}{photo} \times \frac{8 \, bits}{byte} \times \frac{second}{1 \, megabit}$$

Radio a message to your friend Mike

- 1-megabyte photo
- 1-megabit radio link
- How long?

$$\frac{1 \, megabyte}{photo} \times \frac{8 \, bits}{byte} \times \frac{second}{1 \, megabit}$$

$$\frac{1 \, megabyte}{photo} \times \frac{8 \, bits}{byte} \times \frac{second}{1 \, megabit}$$

Radio a message to your friend Mike

- 1-megabyte photo
- 1-megabit radio link
- How long?

$$\frac{1 \, megabyte}{photo} \times \frac{8 \, bits}{byte} \times \frac{second}{1 \, megabit}$$

$$\frac{1 \, megabyte}{photo} \times \frac{8 \, bits}{byte} \times \frac{second}{1 \, megabit}$$

Radio a message to your friend Mike

- 1-megabyte photo
- 1-megabit radio link
- How long?

$$\frac{1 \, megabyte}{photo} \times \frac{8 \, bits}{byte} \times \frac{second}{1 \, megabit}$$

$$\frac{1 \text{ megabyte}}{photo} \times \frac{8 \text{ bits}}{b \text{yte}} \times \frac{second}{1 \text{ megabyt}} = \frac{?}{?}$$

Radio a message to your friend Mike

- 1-megabyte photo
- 1-megabit radio link
- How long?

$$\frac{1 \, megabyte}{photo} \times \frac{8 \, bits}{byte} \times \frac{second}{1 \, megabit}$$

$$\frac{1 \text{ megabyte}}{photo} \times \frac{8 \text{ bits}}{b \text{yte}} \times \frac{second}{1 \text{ megabyt}} = \frac{8 \text{ seconds}}{photo}$$

Two Problems

Small problem

- Mega != Mega
- Computer people: Megabyte (MB) = 2²⁰ bytes
- Network people: Megabit (Mb) = 106 bits
- It's 8.4 seconds, not 8

Two Problems

Small problem

- Mega != Mega
- Computer people: MegaByte (MB) = 2²⁰ bytes
- Network people: Megabit (Mb) = 10⁶ bits
- It's 8.4 seconds, not 8

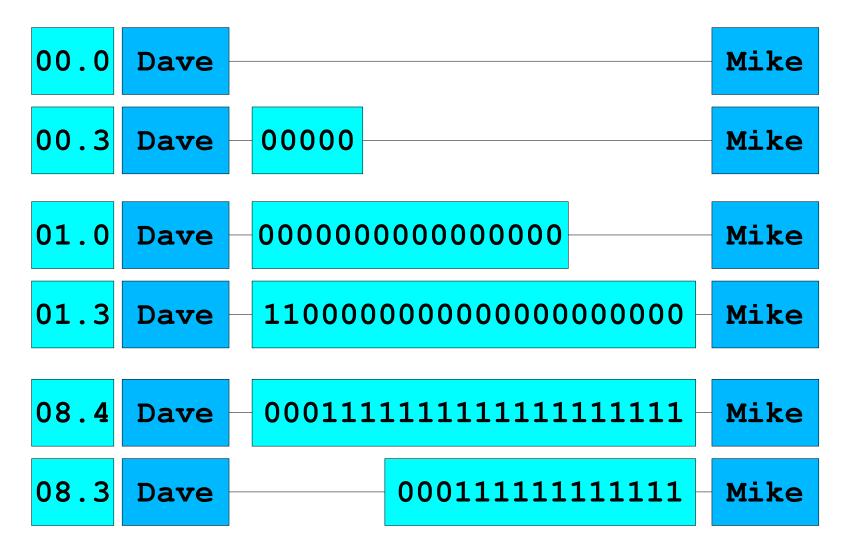
Big problem

- I forgot to tell you... Mike lives on the Moon
 - (Extra credit: What is Mike's last name?)
- It takes radio waves 1.3 seconds to get there

Message latency = sum of

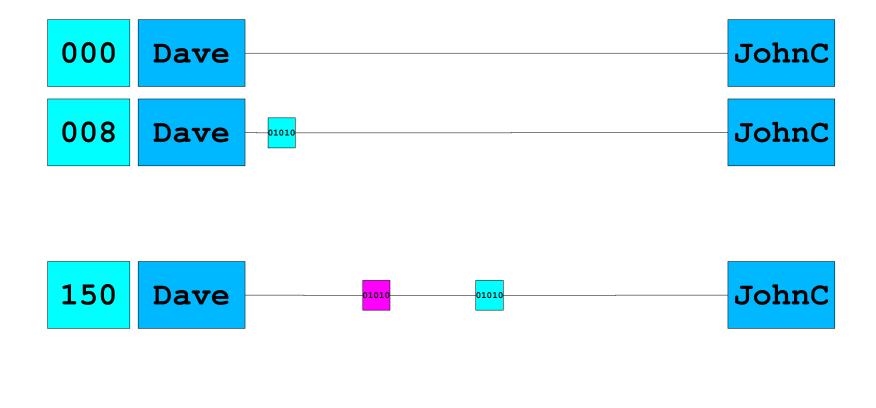
- Propagation delay (distance/lightspeed)
- Transmission time (size/throughput)
- Queue delay (ignore for now)

Message to Mike


- Propagation delay is 1.3 seconds (one-way)
 - Also known as "link delay"
- Transmission time is 8.4 seconds, total is 9.7 (121% of 8)

By the way: RTT (round-trip-time)

Time to send a 0-bit message there and back: 2.6 seconds


Propagation delay vs. transmission time

- May vary widely
- Earth-to-Moon is 1.3 seconds (<< 8.4)
 - Delay is a minor compared to transmission time
 - Can transmit part of message, receive back status
 - "Got that part ok" or "Oops, send it again"

Propagation delay vs. transmission time

- May vary widely
- Earth-to-Moon is 1.3 seconds (<< 8.4)
 - Delay is a minor compared to transmission time
 - Can transmit part of message, receive back status
 - "Got that part ok" or "Oops, send it again"
- Earth-to-Mars is 300-1225 seconds (>> 8.4)
 - Delay <u>vastly exceeds</u> transmission time
 - Link holds multiple entire messages

CMU CS 15-441

JohnC

300

42

Dave

Bandwidth-delay product

- megabits/second X link-delay
- This many bits are always "in flight" / "queued in link"

What if Mike says "Stop!! My buffer is full!"?

- One b-d product of bits are "in flight" to him already
- You will queue <u>another</u> b-d product before you hear his alert!

Message throughput (≠ link throughput)

- How many messages per second can you send to Mike?
- Depends on b-d product vs. message size
- Depends on message protocol (= waiting protocol) you use

See text for more-dignified treatment

No hens, no Loonies, no Martians

Things to watch out for

- Is "delay" one-way or round-trip?
- Mega vs. mega, kilo vs. kilo
- Do we mean link latency or message latency?
- Do we mean link throughput or message throughput?

Things Which Aren't Throughput

Bandwidth

- Properly, measured in Hertz
- Difference between max & min frequency of transmission band
- Routinely abused by CS people to mean "throughput"

Goodput

- Used to mean "productive throughput"
- Ignore "waste" if part of a message is transmitted multiple times

Back to the Internet

Another reason the Internet isn't perfect

- Fatally overoptimized for single-planet case
- Will work to low-Earth orbit
- Efficiency problems talking to the Moon
- Forget about Mars

InterPlanetary Internet

http://www.ipnsig.org/

Summary

First things first

- Read Chapter 1
- Study socket-programming example as a refresher
- Project 1 (individual) out Wednesday
- Course non-goals, goals
 - "Networking perspective", Internet as running example
- Key problems
 - Distributed coordination; scaling
- Network performance concepts
 - Throughput vs. latency, ...