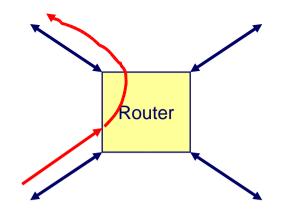
15-441 *Computer Networking*

Distance-Vector Routing Sept. 29, 2004

Topics

Routing task Conceptual algorithm

Realities


RIP protocol

Slides

Hui Zhang, Randy Bryant, Dave Eckhardt

L09a_DV

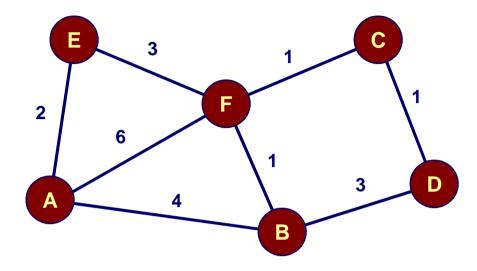
Router Operation

When Packet Arrives at Router

Examine header to determine intended destination*Look up in table to determine next hop in path*Send packet out appropriate port

Terminology

Each router forwards packet to next router


Overall goal is to *route* packet from source to destination

Today's task

How to generate the routing table

-2-

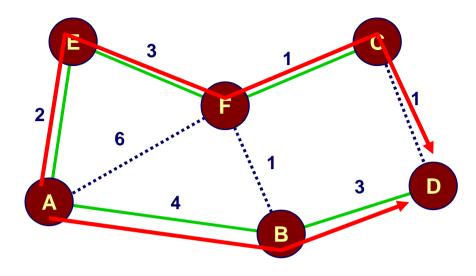
Graph Model

Represent each router as node

Direct link between routers represented by edge

Symmetric links \Rightarrow undirected graph

Edge "cost" c(x,y) denotes measure of difficulty of using link


Task

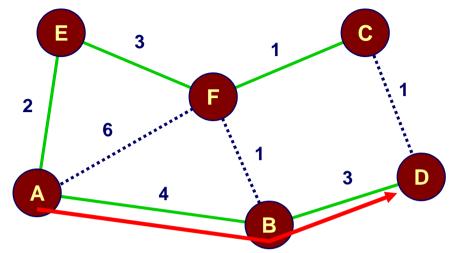
Determine least cost path from every node to every other node Path cost d(x,y) = sum of link costs

-3-

Routes from Node A

Table for A									
Dest	Dest Cost								
Α	0	A							
В	4	В							
С	6	E							
D	7	В							
E	2	E							
F	5	E							

Properties


Some set of shortest paths forms tree (why is it a tree?) "Shortest path spanning tree" Solution not unique E.g., A-B-D, A-E-F-C-D both have cost 7

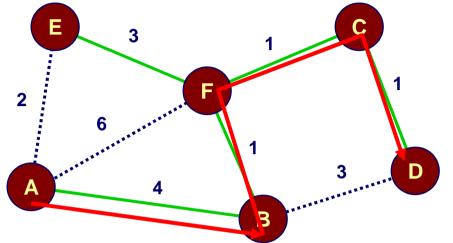
15-441

-4-

Will Packets Follow Computed Route?

Table for A								
Dest Cost Next Hop								
A	0	Α						
В	4	В						
С	6	Е						
D	7	В						
E	2	Ē						
F	5	Е						

Intended Route


A-B-D First hop B

15-441

- 5 -

Will Packets Follow Computed Routes?

т	Table for A								
Dest	Dest Cost Ne Ho								
Α	0	A							
В	4	В							
С	6	E							
D	7	В							
E	2	E							
F	5	E							

A-B-D

First hop B

Actual Route

-6-

A-B-F-C-D

Т	Table for B								
Dest	Cost	Next Hop							
A	4	Α							
В	0	В							
С	2	F							
D	3	F							
E	4	F							
F	1	F							

B has different version of best path to D

Things to Think About

Given

Each entry in each table specifies next hop along SOME shortest path

Concerns

Could a packet get stuck in a loop? What conditions would prevent this? Will a packet follow a shortest path?

Ways to Compute Shortest Paths

Centralized

Collect graph structure in one place Use standard graph algorithm Disseminate routing tables

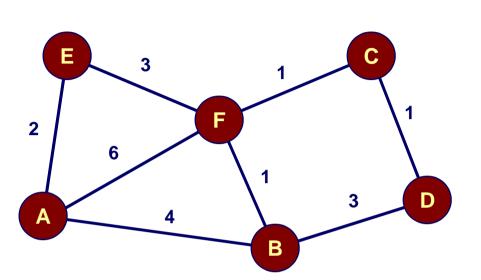
Partially Distributed

Every node collects complete graph structure Each computes shortest paths from it Each generates own forwarding table "Link-state" algorithm

Fully Distributed

No one has copy of graph

Nodes construct their own tables iteratively


Each sends information about *its table* (vs. graph) to neighbors

"Distance-Vector" algorithm

- 8 -

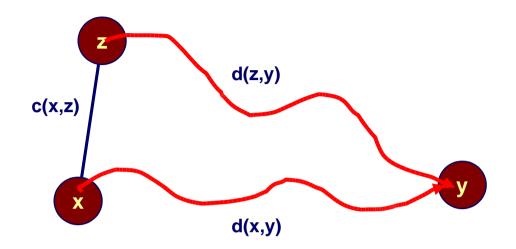
Distance-Vector Method

Initia	Initial Table for A								
Dest	Cost	Next Hop							
Α	0	A							
В	4	В							
С	8	I							
D	80	_							
E	2	E							
F	6	F							

Idea

At any time, have (cost,next-hop) of best known path to destination

Use cost ∞ when no path known


Initially

Have entries only for directly connected nodes

15-441

-9-

Distance-Vector Update

Update(router=x, dest=y, peer=z)

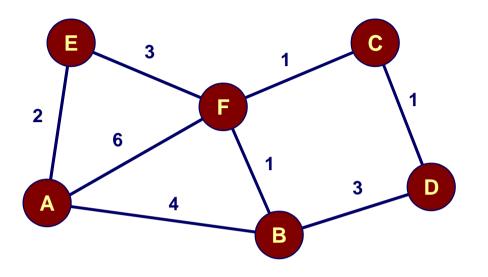
-10-

 $\label{eq:constraint} \begin{array}{ll} d \leftarrow c(x,z) + d(z,y) & \mbox{ $\#$ Cost of path from x to y with first hop z} \\ \mbox{ $if $d < d(x,y)$} & \mbox{ $\#$ Found better path} \\ \mbox{ $return d,z} & \mbox{ $\#$ Updated cost $/$ next hop} \\ \mbox{ $else$} & \mbox{ $return $d(x,y)$, $nexthop($x,y)$} & \mbox{ $\#$ Existing (cost, next hop)$} \\ \end{array}$

Synchronous Version

Bellman-Ford algorithm

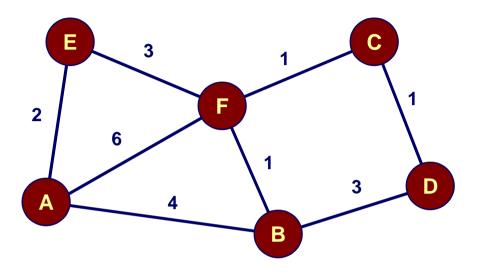
Repeat


For every hop z For every source x For every destination y $d'(x,y) \leftarrow Update(x,y,z)$ For all x,y: $d(x,y) \leftarrow d'(x,y)$

Until Converge

What is maximum number of iterations?

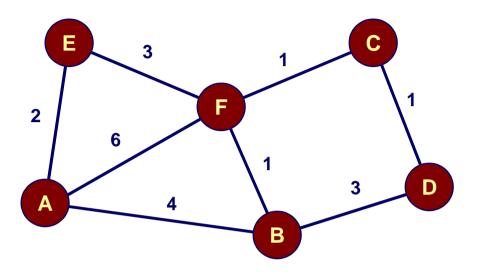
Synchronous Start


Optimum 1-hop paths

Та	able for	A	Та	ble for	В	Та	ble for	· C	Та	able for	. D	Та	able for	E	Та	able foi	' F
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
Α	0	Α	A	4	Α	Α	~	-	A	80	-	Α	2	Α	Α	6	Α
В	4	В	В	0	В	В	~	-	В	3	В	В	8	-	В	1	В
С	8	-	С	8	-	С	0	С	С	1	С	С	8	-	С	1	С
D	8	-	D	3	D	D	1	D	D	0	D	D	8	-	D	8	-
Е	2	Ε	Ε	8	-	Ε	~	-	Е	~	-	Ε	0	Е	Е	3	Ε
F	6	F	F	1	F	F	1	F	F	80	_	F	3	F	F	0	F

Synchronous Iteration #1

Optimum 2-hop paths

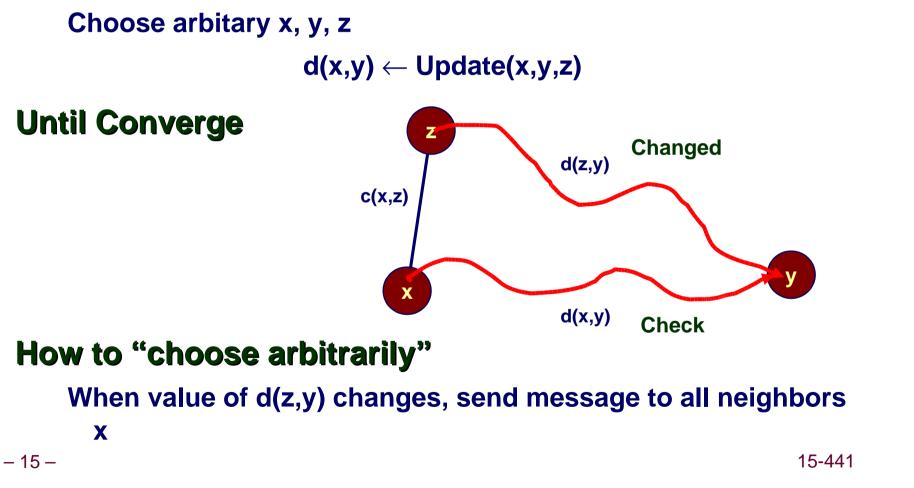


Та	ble for	A	Та	ble for	В	Та	ble for	· C	Та	able for	. D	Та	ble fo	r E	Та	able foi	r F
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
Α	0	Α	A	4	A	A	7	F	Α	7	B	Α	2	Α	Α	5	В
В	4	В	В	0	В	В	2	F	В	3	В	В	4	F	В	1	В
С	7	F	С	2	F	С	0	С	С	1	С	С	4	F	С	1	С
D	7	В	D	3	D	D	1	D	D	0	D	D	8	-	D	2	С
Е	2	Ε	Ε	4	F	Ε	4	F	Ε	8	-	Ε	0	E	Ε	3	Е
F	5	Ε	F	1	F	F	1	F	F	2	С	F	3	F	F	0	F

– 13 –

Synchronous Iteration #2

Optimum 3-hop paths



Та	ble for	A	Та	ble for	В	Та	able for	C	Та	able for	D	Та	ble for	. E	Та	able foi	r F
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
Α	0	Α	A	4	A	A	6	F	A	7	В	Α	2	Α	Α	5	В
В	4	В	В	0	В	В	2	F	В	3	В	В	4	F	В	1	В
С	6	Ε	С	2	F	С	0	С	С	1	С	С	4	F	С	1	C
D	7	В	D	3	D	D	1	D	D	0	D	D	5	F	D	2	С
Е	2	Ε	Ε	4	F	Ε	4	F	Е	5	С	Ε	0	Ε	Е	3	Е
F	5	Ε	F	1	F	F	1	F	F	2	С	F	3	F	F	0	F

Asynchronous Version

Can be performed without any centralized control

Repeat

Convergence Properties

Ordering

Let D denote values d(u,v) for all u & v Say D' \leq D when d'(u,v) \leq d(u,v) for all u & v

Effect of Any Updating Step

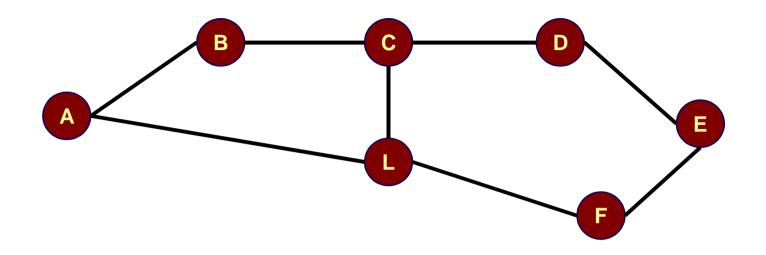
Describe as D' ← Update(D,x,y,z) Gives new values D' such that D' ≤ D "Monotonic" Values cannot go below 0

Implications

Converges to unique "minimum fixed point" cost matrix D* "Fixed point" means D* = Update(D*,x,y,z) for all x, y, & z Tarski Fixed Point Theorem (Multiple path-sets can have same minimal-cost D*) 15-441

– 16 –

Convergence Properties


Note

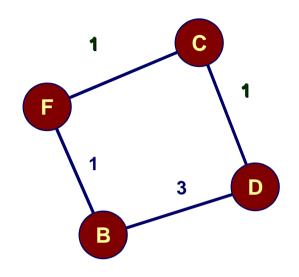
Convergence proof is for *static* topology

No new nodes No link-cost changes

No node failures

Asynchronous = Unpredictable

Consider A-F paths


Two ways for A-F path to converge

E tells D, D tells C, C tells B, B tells A; <u>then</u> L tells A, C C learns C-D-E-F before learning C-L-F A learns A-B-C-D-E-F before learning A-L-F L tells A,C "right away" A, C learn optimal route immediately

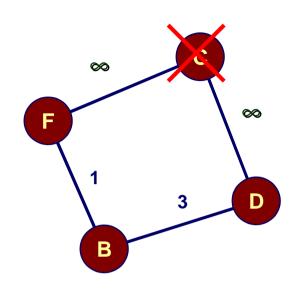
- 18 -

What if Node Fails?

What if C crashes? F & D will stop receiving updates F & D will declare their links to C "down" B will learn "later"

Table for B						
Dst	Cst	Нор				
С	2	F				

Table for D						
Dst	Cst	Нор				
С	2	С				


Table for F									
Dst	Cst	Нор							
С	2	С							

15-441

– 19 –

Link Failure

Set entries to ∞ Iterate

Table for D		
Dst	Cst	Нор
С	8	-

Т	Table for F		
Dst	Cst	Нор	
С	8	-	

15-441

- 20 -

Failing Node Iterations

Stale entry in B propagates to D & F

What Happened?

Table for B

2

Dai

С

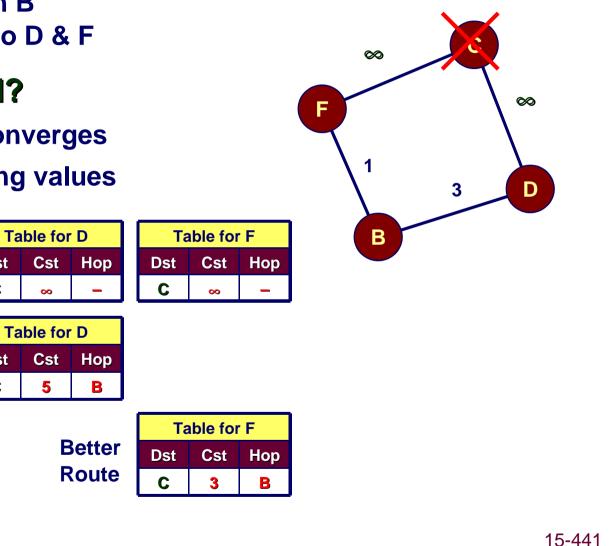
Csi Hop

F

Better

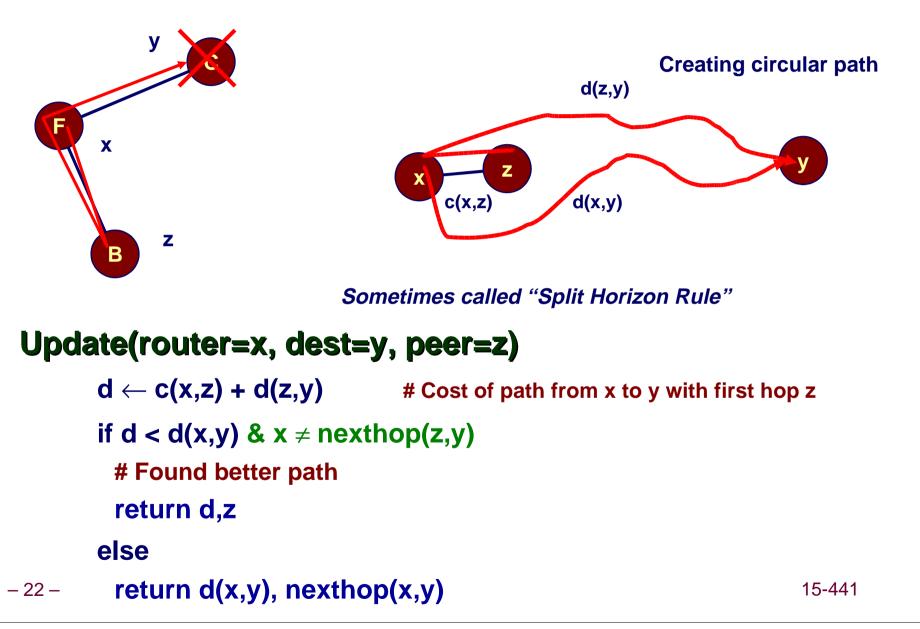
Route

Algorithm converges

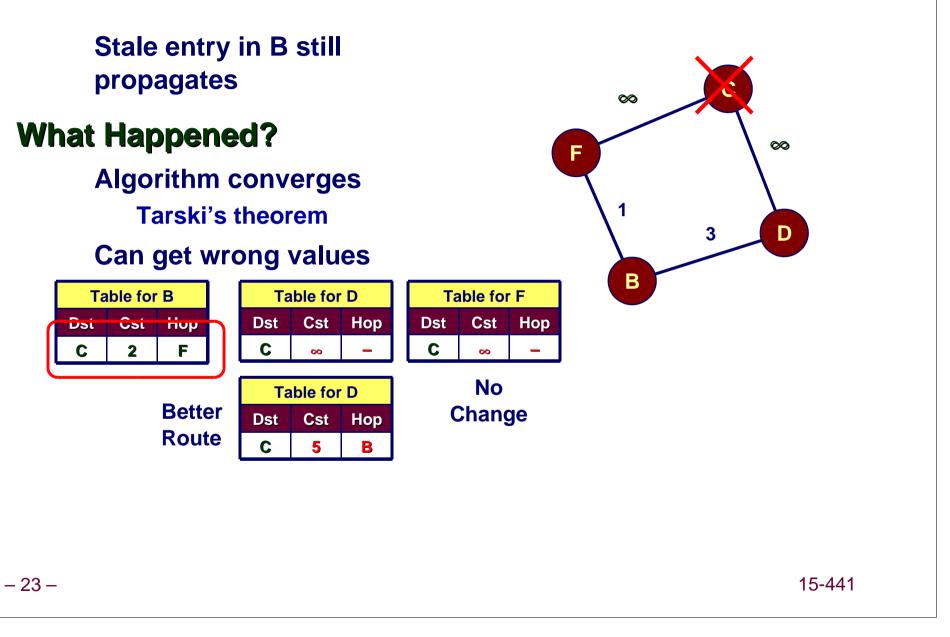

Can get wrong values

Dst

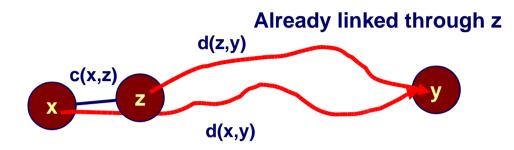
С


Dst

С



- 21 -


Revised Update Rule #1

Iterations with Revision #2

Revised Update Rule #2

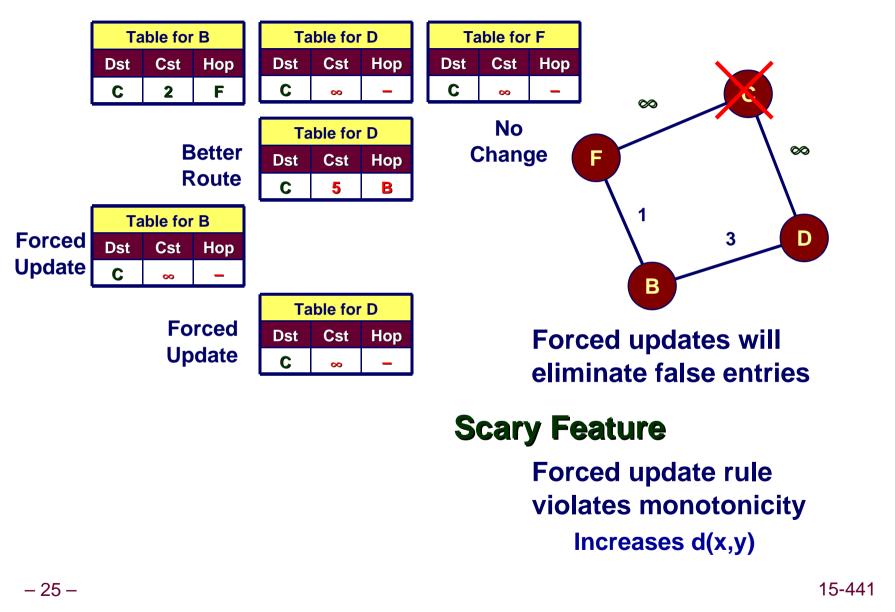
Update(router=x, dest=y, peer=z)

 $d \leftarrow c(x,z) + d(z,y)$ # Cost of path from x to y with first hop z

if nexthop(x,y) = z || # Forced update, regardless of cost

 $(d < d(x,y) \& x \neq nexthop(z,y))$

Forced update or found better path


```
return d,z
```


else

```
return d(x,y), nexthop(x,y)
```

- 24 -

Iterations with Revision #2

Routing Information Protocol (RIP)

Earliest IP routing protocol (1982 BSD) Ideas in first Arpanet protocols (late 60's) Current standard is version 2 (RFC 2453)

Features

Every link has cost 1

"Infinity" = 16

Limits to networks where everything reachable within 15 hops Appropriate for "campus" networks

Sending Updates

Every router listens for updates on UDP port 520

RIP message can contain entries for up to 25 table entries

RIP Updates

Initial

When router first starts, asks for copy of table for every neighbor

Uses it to iteratively generate own table

Periodic

Every 30 seconds, router sends copy of its table to each neighbor

Neighbors use to iteratively update their tables

Triggered

When every entry changes, send copy of entry to neighbors
Except for one causing update (split horizon rule)
Neighbors use to update their tables

RIP Staleness / Oscillation Control

"Count to infinity"

...quick "for small values of infinity"

Route Timer

Every route has timeout limit of 180 seconds

Reached when haven't received update from next hop for 6 periods

If not updated, set to infinity

Behavior

When router or link fails, can take minutes to stabilize Lots of subtlety to get good implementation (see RFCs).

Features of Distributed Algorithms

Desirable in Network Setting

Every node operates in purely local way No central control or global synchronization Only communication between direct neighbors

Not Difficult to Handle Static System

Monotonicity guarantees convergence

Difficult in Dynamically-Changing System

Anything that reduces link cost OK Iterations will converge to reflect reduced costs Anything that increases link cost problematic Iterations will converge, but possibly to wrong values Changing update rule can lead to convergence problems

» Violate monotonicity

– 30 –