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� reading list

� the traceroute/netmask question

� finger client: errors & myths
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Synchronization
TextbookTextbook

� Relevant now

� Section 2.5 (Reliable Transfer)

� Chapter 5: Transport (ok if you read 5.3 lightly)

� Chapter 6: Congestion Control

� Looking Backward / Forward

� Section 3.3 (ATM)

� Section 4.4 (Multicast), 4.5 (MPLS)

� Section 9.1 (DNS)
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Outline
The netmask questionThe netmask question

The finger questionThe finger question

MythsMyths
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Size of Netmask Increases
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As you get closer to the destination, the set of hosts in your 
target area becomes smaller, i.e. the Net ID growns and the 
Host ID shrinks.

Analogy: when you travel to a hotel, you first get to the right 
continent, then the right country, then the right city, and 
finally, the right hotel.
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Size of Netmask Increases

CasesCases

� Departing from a host with only one link

� That link probably has a “default route” entry
» 0.0.0.0/0

� Heading toward “the backbone”

� Probably more default-route entries (mask stays 0 bits long)

� Departing “the backbone” for target's ISP

� One entry probably covers the ISP's address space
» x.y/16

� Departing the ISP to the target organization's network

� One entry probably covers the target organization
» x.y.z/24 

� Arriving at the destination host via point-to-point link

� The table entry for that link on the penultimate host is like
» x.y.z.w/32
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finger
ProblemProblem

� Here is a finger client

� Connect to TCP port 79

� send username

� print out server's response

� Say what's wrong

� This was a “ target-rich environment”
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finger.c
int main(int argc, char *argv[])
{
  int s, len;
  struct sockaddr_in server;
  struct hostent *hp;
  char c, buf[8192];

  if (argc != 3) {
    fprintf(stderr, "usage: %s host user\n", argv[0]);
    exit(9);
  }
  server.sin_family = AF_INET;
  server.sin_port = 79;
  server.sin_addr.s_addr = gethostbyname(argv[1]);
  s = socket(AF_INET, SOCK_DGRAM, 0);
  bind(s, (struct sockaddr *) &server, sizeof (server));
  write(s, argv[2], strlen(argv[2]));
  write(s, "\r\n", 2);
  if ((len = read(s, buf, sizeof (buf))) > 0)
    write(1, buf, len);
  exit(0);
}
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finger.c
int main(int argc, char *argv[])
{
  int s, len;
  struct sockaddr_in server;
  struct hostent *hp;
  char c, buf[8192];

  if (argc != 3) {
    fprintf(stderr, "usage: %s host user\n", argv[0]);
    exit(9);
  }
  server.sin_family = AF_INET;
  server.sin_port = 79;
  server.sin_addr.s_addr = gethostbyname(argv[1]);
  s = socket(AF_INET, SOCK_DGRAM, 0);
  bind(s, (struct sockaddr *) &server, sizeof (server));
  write(s, argv[2], strlen(argv[2]));
  write(s, "\r\n", 2);
  if ((len = read(s, buf, sizeof (buf))) > 0)
    write(1, buf, len);
  exit(0);
}
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finger.c

  server.sin_family = AF_INET;
  server.sin_port = 79;
  server.sin_addr.s_addr = gethostbyname(argv[1]);
  s = socket(AF_INET, SOCK_DGRAM, 0);
  bind(s, (struct sockaddr *) &server, sizeof 

(server));
  write(s, argv[2], strlen(argv[2]));
  write(s, "\r\n", 2);
  if ((len = read(s, buf, sizeof (buf))) > 0)
    write(1, buf, len);

Pretty much all of this is wrongPretty much all of this is wrong
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finger.c

  server.sin_family = AF_INET;
  server.sin_port = 79;
  server.sin_addr.s_addr = gethostbyname(argv[1]);
  s = socket(AF_INET, SOCK_DGRAM, 0);
  bind(s, (struct sockaddr *) &server, sizeof 

(server));
  write(s, argv[2], strlen(argv[2]));
  write(s, "\r\n", 2);
  if ((len = read(s, buf, sizeof (buf))) > 0)
    write(1, buf, len);
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finger.c
BadBad
 server.sin_port = 79;

GoodGood
 server.sin_port = htons(79);

BadBad
 server.sin_addr.s_addr = gethostbyname(argv[1]);

GoodGood
 hp = gethostbyname(argv[1]);
 memmove(&server.sin_addr, hp->h_addr, hp->h_length);
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finger.c
BadBad
  s = socket(AF_INET, SOCK_DGRAM, 0);

GoodGood
  s = socket(AF_INET, SOCK_STREAM, 0);

BadBad
  bind(s, (struct sockaddr *) &server, sizeof 

(server));

GoodGood
  connect(s, (struct sockaddr *) &server, sizeof 

(server));
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finger.c
BadBad
  if ((len = read(s, buf, sizeof (buf))) > 0)
    write(1, buf, len);

GoodGood
  while ((len = read(s, buf, sizeof (buf))) > 0)
    write(1, buf, len);
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Myths
Must close sockets before exit()Must close sockets before exit()

� If that were true we'd all be in big trouble!

� exit()'s job is to clean up process resources

sizeof(buf) == 4

� That's like a real problem...

� sizeof (pretty much any pointer) == 4 (on many machines)

� sizeof (array) is, well, the size of the array, in bytes
» “Doesn't work”  for array parameters to a function
» They're actually pointers (call by reference), not arrays

write(stdout, ...)

� That's mixing metaphors – file descriptors aren't stdio streams

� You could write write(fileno(stdout), ...)

� But if fileno(stdout) != 1 something very very odd is going on
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Myths
Cannot use write() and read() on UDP socketsCannot use write() and read() on UDP sockets

� Sure you can!

read() doesn't block to wait for server responseread() doesn't block to wait for server response

� Yes, it does!

strings must be converted to network byte orderstrings must be converted to network byte order

� The network byte order for strings is:

� Send the first byte, then the second, then the third...

� “Byte order”  is a problem when you have N-byte chunks

� Integer is a 4-byte chunk

� You could have a string byte-order problem with Unicode

� Out of scope
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Myths
Buffer overflows!Buffer overflows!
  write(s, argv[2], strlen(argv[2]));

� We aren't putting anything into a buffer!

� Certainly not one of fixed size, without a length check

� The kernel might be putting these bytes in a buffer

� If the kernel does that unsafely we have problems beyond finger

� The finger server might carelessly handle this request

� But we can't save it from other people triggering that

  read(s, buf, sizeof (buf))

� Ok, this is a buffer

� But we are very carefully not overflowing it!

� If the kernel puts more than sizeof (buf) bytes into buf then we 
have problems bigger than finger

Not all buffer uses are buffer overflows!Not all buffer uses are buffer overflows!


