
Exam Feedback
Mar. 8, 2006

TopicsTopics

� reading list

� the traceroute/netmask question

� finger client: errors & myths

L13b_Exam

15-441
Computer Networking

– 2 – 15-441

Synchronization
TextbookTextbook

� Relevant now

� Section 2.5 (Reliable Transfer)

� Chapter 5: Transport (ok if you read 5.3 lightly)

� Chapter 6: Congestion Control

� Looking Backward / Forward

� Section 3.3 (ATM)

� Section 4.4 (Multicast), 4.5 (MPLS)

� Section 9.1 (DNS)

– 3 – 15-441

Outline
The netmask questionThe netmask question

The finger questionThe finger question

MythsMyths

– 4 – 15-441

Size of Netmask Increases

AN 2

ISP 2

ISP 1

ISP 3

AN 4

AN 1 AN 5

AN 3

Host
Host

Host

Host

Host

Host

Net.Host

Net ID

Net ID
Net ID

Net ID

Next

Next
Next

Next
Forwarding Table

As you get closer to the destination, the set of hosts in your
target area becomes smaller, i.e. the Net ID growns and the
Host ID shrinks.

Analogy: when you travel to a hotel, you first get to the right
continent, then the right country, then the right city, and
finally, the right hotel.

– 5 – 15-441

Size of Netmask Increases

CasesCases

� Departing from a host with only one link

� That link probably has a “default route” entry
» 0.0.0.0/0

� Heading toward “the backbone”

� Probably more default-route entries (mask stays 0 bits long)

� Departing “the backbone” for target's ISP

� One entry probably covers the ISP's address space
» x.y/16

� Departing the ISP to the target organization's network

� One entry probably covers the target organization
» x.y.z/24

� Arriving at the destination host via point-to-point link

� The table entry for that link on the penultimate host is like
» x.y.z.w/32

– 6 – 15-441

finger
ProblemProblem

� Here is a finger client

� Connect to TCP port 79

� send username

� print out server's response

� Say what's wrong

� This was a “ target-rich environment”

– 7 – 15-441

finger.c
int main(int argc, char *argv[])
{
 int s, len;
 struct sockaddr_in server;
 struct hostent *hp;
 char c, buf[8192];

 if (argc != 3) {
 fprintf(stderr, "usage: %s host user\n", argv[0]);
 exit(9);
 }
 server.sin_family = AF_INET;
 server.sin_port = 79;
 server.sin_addr.s_addr = gethostbyname(argv[1]);
 s = socket(AF_INET, SOCK_DGRAM, 0);
 bind(s, (struct sockaddr *) &server, sizeof (server));
 write(s, argv[2], strlen(argv[2]));
 write(s, "\r\n", 2);
 if ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);
 exit(0);
}

– 8 – 15-441

finger.c
int main(int argc, char *argv[])
{
 int s, len;
 struct sockaddr_in server;
 struct hostent *hp;
 char c, buf[8192];

 if (argc != 3) {
 fprintf(stderr, "usage: %s host user\n", argv[0]);
 exit(9);
 }
 server.sin_family = AF_INET;
 server.sin_port = 79;
 server.sin_addr.s_addr = gethostbyname(argv[1]);
 s = socket(AF_INET, SOCK_DGRAM, 0);
 bind(s, (struct sockaddr *) &server, sizeof (server));
 write(s, argv[2], strlen(argv[2]));
 write(s, "\r\n", 2);
 if ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);
 exit(0);
}

– 9 – 15-441

finger.c

 server.sin_family = AF_INET;
 server.sin_port = 79;
 server.sin_addr.s_addr = gethostbyname(argv[1]);
 s = socket(AF_INET, SOCK_DGRAM, 0);
 bind(s, (struct sockaddr *) &server, sizeof

(server));
 write(s, argv[2], strlen(argv[2]));
 write(s, "\r\n", 2);
 if ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);

Pretty much all of this is wrongPretty much all of this is wrong

– 10 – 15-441

finger.c

 server.sin_family = AF_INET;
 server.sin_port = 79;
 server.sin_addr.s_addr = gethostbyname(argv[1]);
 s = socket(AF_INET, SOCK_DGRAM, 0);
 bind(s, (struct sockaddr *) &server, sizeof

(server));
 write(s, argv[2], strlen(argv[2]));
 write(s, "\r\n", 2);
 if ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);

– 11 – 15-441

finger.c
BadBad
 server.sin_port = 79;

GoodGood
 server.sin_port = htons(79);

BadBad
 server.sin_addr.s_addr = gethostbyname(argv[1]);

GoodGood
 hp = gethostbyname(argv[1]);
 memmove(&server.sin_addr, hp->h_addr, hp->h_length);

– 12 – 15-441

finger.c
BadBad
 s = socket(AF_INET, SOCK_DGRAM, 0);

GoodGood
 s = socket(AF_INET, SOCK_STREAM, 0);

BadBad
 bind(s, (struct sockaddr *) &server, sizeof

(server));

GoodGood
 connect(s, (struct sockaddr *) &server, sizeof

(server));

– 13 – 15-441

finger.c
BadBad
 if ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);

GoodGood
 while ((len = read(s, buf, sizeof (buf))) > 0)
 write(1, buf, len);

– 14 – 15-441

Myths
Must close sockets before exit()Must close sockets before exit()

� If that were true we'd all be in big trouble!

� exit()'s job is to clean up process resources

sizeof(buf) == 4

� That's like a real problem...

� sizeof (pretty much any pointer) == 4 (on many machines)

� sizeof (array) is, well, the size of the array, in bytes
» “Doesn't work” for array parameters to a function
» They're actually pointers (call by reference), not arrays

write(stdout, ...)

� That's mixing metaphors – file descriptors aren't stdio streams

� You could write write(fileno(stdout), ...)

� But if fileno(stdout) != 1 something very very odd is going on

– 15 – 15-441

Myths
Cannot use write() and read() on UDP socketsCannot use write() and read() on UDP sockets

� Sure you can!

read() doesn't block to wait for server responseread() doesn't block to wait for server response

� Yes, it does!

strings must be converted to network byte orderstrings must be converted to network byte order

� The network byte order for strings is:

� Send the first byte, then the second, then the third...

� “Byte order” is a problem when you have N-byte chunks

� Integer is a 4-byte chunk

� You could have a string byte-order problem with Unicode

� Out of scope

– 16 – 15-441

Myths
Buffer overflows!Buffer overflows!
 write(s, argv[2], strlen(argv[2]));

� We aren't putting anything into a buffer!

� Certainly not one of fixed size, without a length check

� The kernel might be putting these bytes in a buffer

� If the kernel does that unsafely we have problems beyond finger

� The finger server might carelessly handle this request

� But we can't save it from other people triggering that

 read(s, buf, sizeof (buf))

� Ok, this is a buffer

� But we are very carefully not overflowing it!

� If the kernel puts more than sizeof (buf) bytes into buf then we
have problems bigger than finger

Not all buffer uses are buffer overflows!Not all buffer uses are buffer overflows!

