
TCP Connection Management,
Error Control
Mar. 29, 2004

Slides – Randy Bryant, Hui Zhang, Ion Stoica, Dave
Eckhardt

L17a_TCP

15-441
Computer Networking

– 2 – 15-441

(Possible) Transport Protocol
Functions
Multiplexing/demultiplexing for multiple applications.Multiplexing/demultiplexing for multiple applications.

� “Port” abstraction abstracts OS notions of “process”

Connection establishment.Connection establishment.

� Logical end-to-end connection

� Connection state to optimize performance

Error control.Error control.

� Hide unreliability of the network layer from applications

� Many types of errors: corruption, loss, duplication, reordering.

End-to-end flow control.End-to-end flow control.

� Avoid flooding the receiver

[Congestion control.][Congestion control.]

� Avoid flooding the network

– 3 – 15-441

Outline
Connection establishmentConnection establishment

� Reminder

Error control, Flow controlError control, Flow control

� Stop & Wait vs. sliding window (conceptual and TCP)

� Ack flavors, windows, timeouts, sequence numbers

Connection teardownConnection teardown

Next Lecture – Wireless/MobilityNext Lecture – Wireless/Mobility

Monday – TCP againMonday – TCP again

� Congestion control – you will not address in Project 3

– 4 – 15-441

Transmission Control Protocol
(TCP)
Reliable bi-directional byte streamReliable bi-directional byte stream

Connections established & torn downConnections established & torn down

� Analogy: setting up & terminating phone
call

Multiplexing/ demultiplexingMultiplexing/ demultiplexing

� Ports at both ends

Error controlError control

� Users see correct, ordered byte
sequences

End-end flow controlEnd-end flow control

� Avoid overwhelming machines at each
end

Congestion avoidanceCongestion avoidance

� Avoid creating traffic jams within network

Source Port Dest. Port

Data Sequence #

Acknowledgment Sequence #

HL/Flags Window

D. Checksum Urgent Pointer

Options..

– 5 – 15-441

Establishing Connection

Three-Way HandshakeThree-Way Handshake

� Each side notifies other of starting sequence number it will
use for sending

� Each side acknowledges other's sequence number

� SYN-ACK: Acknowledge sequence number + 1

� “Piggy-back” second SYN with first ACK

SYN: SeqC

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

Client Server

– 6 – 15-441

Error Control – Threats
Network may corrupt framesNetwork may corrupt frames

� Despite link-level checksum

� Despite switch/router memory ECC

� Example

� Store packet headers in separate memory from packet bodies

� Maintain association between header #343 and body #343

� Most of the time...

Packet-sequencing issuesPacket-sequencing issues

� Network may duplicate packets (really?)

� Network may re-order packets (why?)

� Network may lose packets (often, actually)

– 7 – 15-441

Error Control
Segment corruption problemsSegment corruption problems

� Add end-to-end checksum to TCP segments

� Computed at sender

� Checked at receiver

Packet sequencing problemsPacket sequencing problems

� Include sequence number in each segment

� Byte number of 1st data byte in segment

� Duplicate: ignore

� Reordered: re-reorder or drop

� Lost: retransmit

– 8 – 15-441

Error Control

Lost segments detected by sender.Lost segments detected by sender.

� Receiver won't ACK a lost segment

� Sender can use timeout to detect lack of acknowledgment

� Setting timeout requires estimate of round-trip time

Retransmission requires sender to keep copy of data.Retransmission requires sender to keep copy of data.

� Local copy is discarded when ACK is received

– 9 – 15-441

Error Control Algorithms

Use two basic techniques: Use two basic techniques:

� Acknowledgements (ACKs)

� Timeouts

Two examples:Two examples:

� Stop-and-wait

� Sliding window

– 10 – 15-441

Stop-and-Wait

Receiver: send an acknowledge (ACK) back to the sender Receiver: send an acknowledge (ACK) back to the sender
upon receiving a packet (frame)upon receiving a packet (frame)

Sender: excepting first packet, send next packet only upon Sender: excepting first packet, send next packet only upon
receiving the ACK for the current packetreceiving the ACK for the current packet

Ti
m

e

Sender Receiver
frame

frame

ACK

ACK

– 11 – 15-441

What Can Go Wrong?
Sender Receiver

frame

frame

ACK

Ti
m

eo
ut

Frame lost - resend it
on timeout

Sender Receiver
frame

frame

ACK

ACK

Ti
m

eo
ut

ACK lost - resend packet

Receiver must be able to
detect this is duplicate, not
the next packet.

Sender Receiver
frame

frame

stale

ACK

ACKTi
m

eo
ut

ACK delayed – resend packet

Sender must be able to detect
when an ACK is for an old data
packet.

new frame

– 12 – 15-441

Stop & Wait Sequence Numbers

Need a way to detect stale packetsNeed a way to detect stale packets

� Stale data at receiver

� Stale ACK at sender

TFTP stop&wait sequence numbers are conservativeTFTP stop&wait sequence numbers are conservative

� Each packet, ACK is tagged with file position

� This is overkill

� Bounding packet lifetime in network allows smaller sequence
numbers

� Special case: point-to-point link, 1-bit sequences numbers

– 13 – 15-441

Stop-and-Wait Disadvantage

May lead to inefficient link utilizationMay lead to inefficient link utilization

ExampleExample

� One-way propagation = 15 ms

� Throughput = 100 Mbps

� Packet size = 1000 bytes: transmit = (8*1000)/108 = 0.08ms

� Neglect queue delay: Latency = approx. 15 ms; RTT = 30 ms

Propagation = 15 ms

Throughput = 100 Mbps

– 14 – 15-441

Stop-and-Wait Disadvantage (cont'd)

Send a message every 30 msSend a message every 30 ms

� Throughput = (8*1000)/0.03 = 0.2666 Mbps

Thus, the protocol uses less than 0.3% of the link Thus, the protocol uses less than 0.3% of the link
capacity!capacity! Sender Receiver

frame

frame

ACK

ACK

30
 m

s
30

 m
s

– 15 – 15-441

Solution

Don’t wait for the ACK of the previous packet before Don’t wait for the ACK of the previous packet before
sending the next packet!sending the next packet!

– 16 – 15-441

Sliding Window Protocol: Sender

Each packet has a sequence numberEach packet has a sequence number

� Assume infinite sequence numbers for simplicity

Sender maintains a window of sequence numbersSender maintains a window of sequence numbers

� SWS (sender window size) – maximum number of
packets that can be sent without receiving an ACK

� LAR (last ACK received)

� LFS (last frame sent)

seq. numbersLAR LFS

Acknowledged packets Packets not acknowledged yet

– 17 – 15-441

Example

Assume SWS = 3Assume SWS = 3 Sender Receiver

frame 1
1

frame 2
frame 3

2 31

ACK 1
2 31

frame 4
2 3 41 ACK 2

frame 5
2 3 4 51

Note: usually ACK contains the sequence number of the first packet in
sequence expected by receiver

21

– 18 – 15-441

Need for Receiver Window

Time

Window size = 3 packets

Sender Receiver

1
2
3

4

– 19 – 15-441

Need for Receiver Window

Time

Window size = 3 packets

Sender Receiver

1
2
3

4
5

– 20 – 15-441

Need for Receiver Window

Time

Window size = 3 packets

Sender Receiver

1
2
3

4
5
6

7

Timeout
Packet 5

5
6
7

Packets
Still
Arriving

– 21 – 15-441

Sliding Window Protocol: Receiver

Receiver maintains a window of sequence numbersReceiver maintains a window of sequence numbers

� RWS (receiver window size) – maximum number of out-
of-sequence packets that can received

� LFR (last frame received) – last frame received in
sequence

� LAF (last acceptable frame)

� LAF – LFR <= RWS

Note that this window is just for sliding-windowNote that this window is just for sliding-window

� TCP “ receiver window” has two purposes

� TCP also has a “congestion window”

� Secret – does not appear in packet header

– 22 – 15-441

Sliding Window Protocol: Receiver

Let seqNum be the sequence number of arriving packetLet seqNum be the sequence number of arriving packet

If (seqNum <= LFR) or (seqNum >= LAF)If (seqNum <= LFR) or (seqNum >= LAF)

� Discard packet

Else Else

� Accept packet

� ACK largest sequence number seqNumToAck, such that all
packets with sequence numbers <= seqNumToAck were received

seq. numbersLFR LAF

Packets in sequence Packets out-of-sequence

– 23 – 15-441

Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked

Must retain for possible retransmission

– 24 – 15-441

Acked but not
delivered to user

Not yet
acked

Receive buffer

window

Window Flow Control: Receive Side

– 25 – 15-441

Acked but not
delivered to user

Not yet
acked

Receive buffer

window

Packet Reception
N
e
w

What should receiver do?

– 26 – 15-441

Maximum Window Size
Mechanism for receiver to exert flow controlMechanism for receiver to exert flow control

� Prevent sender from overwhelming receiver's buffering &
processing capacity

� Max. transmission rate = window size / round trip time

Acked but not
delivered to user

Not yet
acked

Receive buffer

window

– 27 – 15-441

Choices of Ack

Cumulative ackCumulative ack

� I have received 17..23

� I have [still] received 17..23

Selective ackSelective ack

� I received 17-23, 25-27

Negative ackNegative ack

� I think I'm missing 24...

Tradeoffs?Tradeoffs?

– 28 – 15-441

Window Size Too Small

Sender

Receiver
Time

Max Throughput =
Window Size

Roundtrip Time

RTT

– 29 – 15-441

Adequate Window Size

Sender

Receiver
Time

Max Throughput =
Window Size

Roundtrip Time

RTT

– 30 – 15-441

Timeout Value Selection

Long timeout? Long timeout?

Short timeout?Short timeout?

Solution? Solution?

– 31 – 15-441

Setting Retransmission Timeout
(RTO)

� Time between sending & resending segment

ChallengeChallenge

� Too long: Add latency to communication when packets
dropped

� Too short: Send too many duplicate packets

� General principle: Must be > 1 Round Trip Time (RTT)

Initial Send

Retry

Ack

RTO
Initial Send

Retry
Ack

RTO

Detect dropped packet RTO too short

– 32 – 15-441

Round-trip Time Estimation
Every Data/Ack pair gives new RTT estimateEvery Data/Ack pair gives new RTT estimate

Can Get Lots of Short-Term FluctuationsCan Get Lots of Short-Term Fluctuations

Data

AckSample

– 33 – 15-441

Original TCP Round-trip Estimator
Round trip times exponentially averaged:Round trip times exponentially averaged:

� New RTT = α (old RTT) + (1 - α) (new sample)

� Recommended value for α: 0.8 - 0.9

� 0.875 for most TCP's

Retransmit timer set to Retransmit timer set to ββ RTT, where RTT, where ββ = 2 = 2

� Want to be somewhat conservative about retransmitting

0

0.5

1

1.5

2

2.5

– 34 – 15-441

RTT Sample Ambiguity

Karn/Partridge AlgorithmKarn/Partridge Algorithm

� Ignore sample for segment that has been retransmitted

� Use exponential backoff for retransmissions

� Each time retransmit same segment, double the RTO

� Based on premise that packet loss is caused by major
congestion

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B
Original transmission

retransmission
Sample
RTT

ACKRTO
X

– 35 – 15-441

Sequence Number Space
Each byte in byte stream is numbered.Each byte in byte stream is numbered.

� 32 bit value

� Wraps around

� Initial values selected at start up time

TCP breaks byte stream into packets (“segments”)TCP breaks byte stream into packets (“segments”)

� Packet size is limited to the Maximum Segment Size

Each segment has a sequence number.Each segment has a sequence number.

� Indicates where it fits in the byte stream

segment 8 segment 9 segment 10

13450 14950 16050 17550

– 36 – 15-441

Finite Length Sequence Number

Sequence number can wrap aroundSequence number can wrap around

� What is the problem?

� What is the solution?

� Hint: not “crash the kernel”

� Not even “crash the connection” or “connection full”

– 37 – 15-441

Sequence Numbers
32 Bits, unsigned32 Bits, unsigned

Circular Comparison, “b following a”

Why So Big?Why So Big?

� For sliding window, must have

� |Sequence Space| > |Sending Window| + |Receiving Window|

� No problem

� Also must guard against stray packets

� With IP, packets have maximum lifetime of 120s

� Sequence number would wrap around in this time at 286MB/s

0Max

a
b

b < a

0Max a

b

b < a, but “b >> a”

– 38 – 15-441

Error Control Summary

Basic mechanismsBasic mechanisms

� CRC, checksum

� Timeout

� Acknowledgement

� Sequence numbers

� Window

Many variations and detailsMany variations and details

– 39 – 15-441

TCP Flow Control
Recall sliding-window as used for Recall sliding-window as used for errorerror control control

� For window size n, can send up to n bytes without receiving
an acknowledgement

� When the data are acknowledged then the window slides
forward

Achieve Achieve flowflow control via dynamically-sized window control via dynamically-sized window

� Sender naturally tracks outstanding packets versus max

� Sending one packet decreases budget by one

� Receiver updates “open window” in every response

� Packet B ⇒ A contains AckA and WindowA

� Sender can send bytes up through (AckA + WindowA)

� Receiver can increase or decrease window at any time

� Original TCP always sent entire window

� Congestion control now limits this

– 40 – 15-441

Bidirectional Communication

Each Side of Connection can Send Each Side of Connection can Send andand Receive Receive

What this MeansWhat this Means

� Maintain different sequence numbers for each direction

� Single segment can contain new data for one direction, plus
acknowledgement for other

� But some contain only data & others only acknowledgement

Send bytes 1000:2000

Ack bytes 1000:2000
Send bytes 40000:42000

Ack bytes 40000:42000

– 41 – 15-441

Ongoing Communication
Bidirectional CommunicationBidirectional Communication

� Each side acts as sender & receiver

� Every message contains acknowledgement of received
sequence

� Even if no new data have been received

� Every message advertises window size

� Size of its receiving window

� Every message contains sent sequence number

� Even if no new data being sent

When Does Sender Actually Send Message?When Does Sender Actually Send Message?

� When a maximal-sized segment worth of bytes is available

� When application tells it

� Set PUSH flag for last segment sent

� When timer expires

– 42 – 15-441

acknowledged sent to be sent outside window

Source Port Dest. Port

Sequence Number

Acknowledgment

HL/Flags Window

D. Checksum Urgent Pointer

Options..

Source Port Dest. Port

Sequence Number

Acknowledgment

HL/Flags Window

D. Checksum Urgent Pointer

Options..

Host A ⇒ B Host B ⇒ A

App write()

Window Flow Control: Send Side

– 43 – 15-441

TCP Transmission

Client sends 796 bytesClient sends 796 bytes

Client sends 1260 more Client sends 1260 more
bytesbytes

Server acknowledges 796 Server acknowledges 796
bytesbytes

09:23:33.132509 IP 128.2.222.198.3123 > 192.216.219.96.80: P
 4019802005:4019802801(796) ack 3428951570 win 65535 (DF)

09:23:33.149875 IP 128.2.222.198.3123 > 192.216.219.96.80: .
 4019802801:4019804061(1260) ack 3428951570 win 65535 (DF)

09:23:33.212291 IP 192.216.219.96.80 > 128.2.222.198.3123: . ack
 4019802801 win 7164 (DF)

1

2
3

– 44 – 15-441

Tearing Down Connection
Either Side Can Initiate Tear Either Side Can Initiate Tear

DownDown

� Send FIN signal

� “ I'm not going to send any more
data”

Other Side Can Continue Other Side Can Continue
Sending DataSending Data

� “Half-open connection”

� I must continue to acknowledge

Acknowledging FINAcknowledging FIN

� Acknowledge last sequence
number + 1

A B
FIN, SeqA

ACK, SeqA+1

ACK

Data

ACK, SeqB+1

FIN, SeqB

– 45 – 15-441

TCP Connection Teardown Example

SessionSession

� Echo client on 128.2.222.198, server on 128.2.210.194

Client FINClient FIN

� SeqC: 1489294581

Server ACK + FINServer ACK + FIN

� Ack: 1489294582 (= SeqC+1)

� SeqS: 1909787689

Client ACKClient ACK

� Ack: 1909787690 (= SeqS+1)

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616: F
 1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474: F
 1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616: . ack
 1909787690 win 65434 (DF)

– 46 – 15-441

State Diagram: Connection Tear-
down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN
CLOSE

send FIN
CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK
rcv FIN

delete TCB
Timeout=2msl

send FIN
CLOSE

send ACK
rcv FIN

snd ACK
rcv FIN

rcv ACK of FIN

snd ACK
rcv FIN+ACK

ACK

Active Close

Passive Close

– 48 – 15-441

Key TCP Design Decisions
Connection OrientedConnection Oriented

	 Explicit setup & teardown of connections

Byte-stream orientedByte-stream oriented

	 vs. message-oriented

	 Sometimes awkward for application to infer message
boundaries

Sliding Window with Cumulative AcknowledgementSliding Window with Cumulative Acknowledgement

	 Single acknowledgement covers range of bytes

	 Single missing message may trigger series of
retransmissions

No Negative AcknowledgementsNo Negative Acknowledgements

	 Any problem with transmission must be detected by timeout

	 OK for IP to silently drop packets

