<u>Topics in Wireless and Mobile</u> <u>Networking</u>

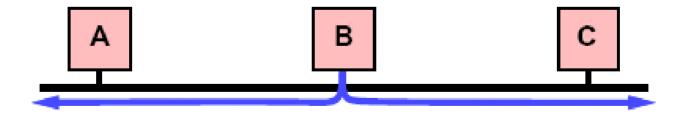
David A. Maltz Carnegie Mellon University dmaltz@cs.cmu.edu 15-441 11/3/04

Why Wireless is Different

Wireless and mobile networks break many assumptions

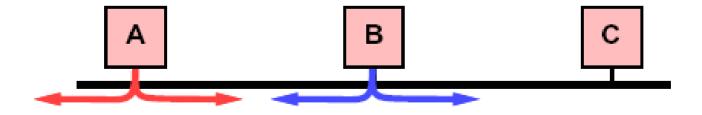
Media access control is a solved problem Distributed coordination is hard (802.11 MAC)

Wired links have low *bit error rate (BER)* (10⁻⁹ or less) Wireless links range from 10⁻⁴ to 10⁻⁷ (802.11 MAC)


IP subnets have well defined borders Radio cells overlap (802.11 MAC, Mobile IP)

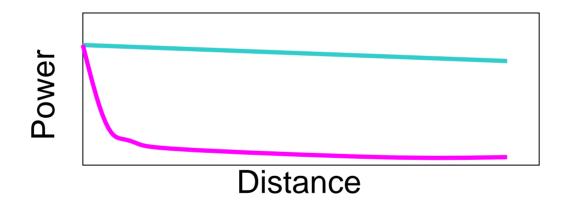
All machines on a subnet have a common prefix What about mobile machines visiting the subnet? (Mobile IP)

Wired Carrier Sense Multiple Access (CSMA)


How to share a common channel?

- Listen for *carrier* before transmitting
- Carrier is just energy from another transmission
- While you hear carrier, wait before transmitting

Wired Collision Detect (CD)


- Listen while transmitting
- If what you hear isn't what you're sending, then *collision*:
 - Abort transmission of current packet
 - Try again after a random delay
 - Each collision for same packet doubles average delay

Wireless CSMA

CSMA can be used in wireless, but has problems

- *wired* network: signal strength at sender and receiver are essentially the same
- wireless network: inverse square law (or worse) applies (P_{recv} = P_{xmit}/D^k, k > 2)

CSMA does not give the right information in wireless:

- Carrier sense detects signals at the transmitter
- But collisions occur at the receiver

Issue 1: Wireless Collision Detect

Wireless can't do collision detect like Ethernet Can't effectively listen while you send:

- In some systems, the hardware isn't flexible enough:
 - Transmit and receive are on different frequencies
 - Transceiver might be half-duplex

Distance

- In any case, all you could hear is yourself any way:
 - The inverse square law
 - Your own signal strength at your own antenna is *much* stronger than anybody else's signal

Issue 2: The Hidden Terminal Problem

Consider the following situation:

- A is sending to B
- C is *out of range* of A's transmissions to B
- C wants to send (to anybody)

CSMA doesn't work well for wireless here:

- C can't know to wait since it can't hear carrier from A
- B can hear both A and C, thus collision at B
- A is "hidden" to C

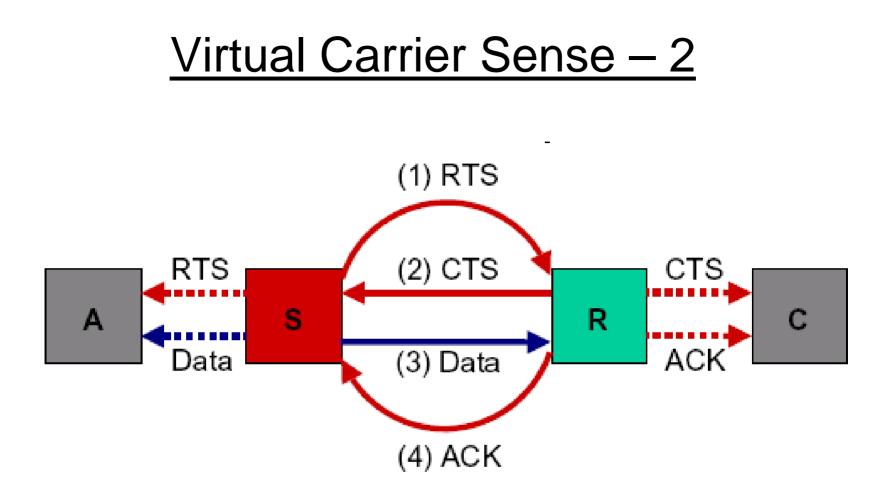
Issue 3: The Exposed Terminal Problem

Consider the following situation:

- B is sending to A
- C is *in range* of B's transmissions to A
- C wants to send to anybody but B

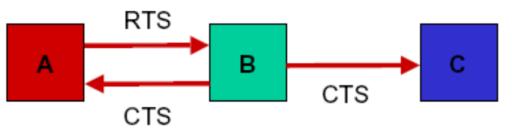
CSMA doesn't work well for wireless here either:

- C thinks it should wait since it can hear carrier from B
- If A is out of range of C, then C waits needlessly
- C is "exposed" to B

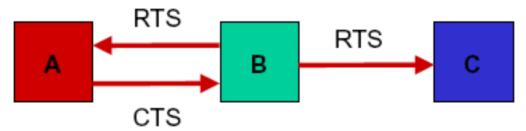

Partial Solution: Virtual Carrier Sense

Packet types:

- Request-to-Send (RTS): Sender sends to receiver before sending a data packet
- Clear-to-Send (CTS): Receiver replies if ready for data packet to be sent
- Acknowledgment (ACK): receiver sends if data is received successfully


All packets contain:

- Address of the *sender* of the intended data packet
- Address of the *receiver* of the intended data packet
- *Duration* of the remainder of the transmission


Virtual Carrier Sense - 3

• Hidden terminal problem is avoided:

C waits to send since it hears B's CTS

• Exposed terminal problem is avoided:

C does not wait to send since it does not hear A's CTS Does (and cannot) *not* prevent all collisions!

IEEE 802.11 Usage Model

Host computer sees an "ethernet interface"

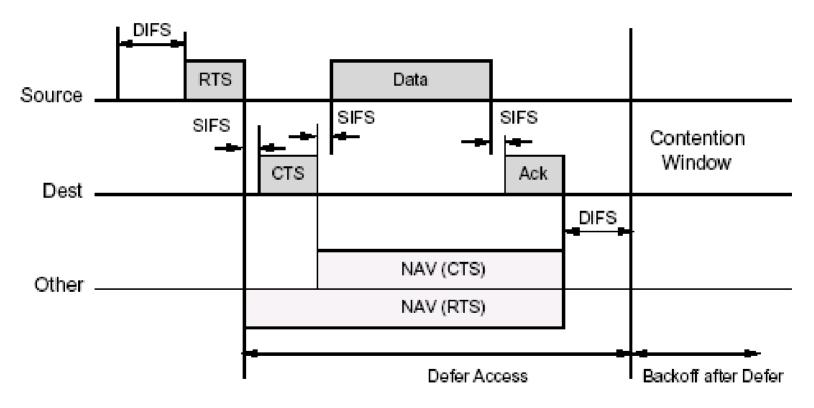
- Just like a wired LAN
- Uses 48-bit 802.3 MAC addresses
- All hosts "in range" of each other see common shared channel
- Supports ARP, broadcast, LAN multicast
- Can directly communicate with neighbors

802.11 Carrier Sensing

802.11 uses both *physical* and *virtual* carrier sensing:

- Physical carrier sense provided by PHY
- Virtual carrier sense provided by MAC

Virtual carrier sensing:


- Maintained by station through *Network Allocation Vector (NAV)*
- NAV records prediction of future traffic on medium
- Counter that counts down busy time at uniform rate
- Set based on Duration field in received packets (e.g., RTS, CTS)
- When nonzero, virtual carrier sense thinks medium is busy

Carrier sense mechanism combines both mechanisms:

- Medium considered busy whenever either indicates carrier
- Medium also considered busy whenever our own transmitter is on

Use of RTS and CTS

Other data senders must wait until entire RTS/CTS/Data/ACK finished

RTS/CTS only used for data packets larger than some threshold --- You can tune this!

Multirate Support in 802.11

144 bits	48 bits		
PLCP preamble	PLCP hdr	MAC PDU	Data

To enable sharing the media among many nodes:

- All control information must be transmitted at rate understood by all stations
- After control information, transceivers change to rate agreed on by sender and receiver
- Preamble and header sent at lowest coding rate
 - 1 Mbps in .11b/g
 - 6 Mbps in .11a

802.11 "Standards"

802.11b

- In theory: 1,2,5.5,11 Mbps
- Reality: 5-6 Mbps

802.11a

- In theory: 54 Mbps
- Reality: 20-24 Mbps

802.11g

- Specification: 54Mbps, Claims: 108 Mbps
- Reality: 20-70Mbps
- 1 in 4 new devices fails compliance testing they're probably marketed anyway http://news.com.com/2100-7351-5139499.html

Check Your Understanding

You are node B running the 802.11 MAC protocol

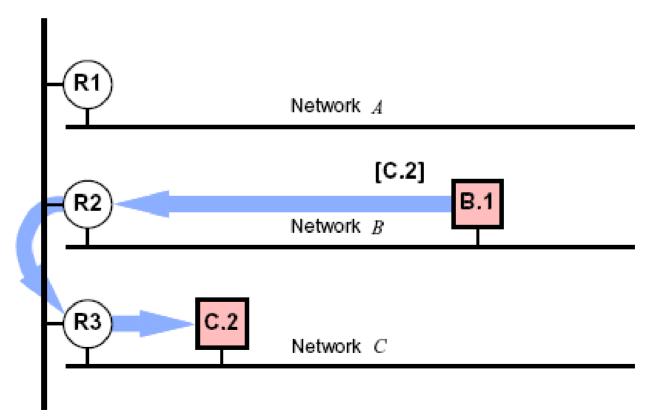
В

You received RTS from node A indicating a 1KB pkt waiting for you

D

What do you do now?

А


- Immediately transmit CTS, so exchange completes before neighbor's timers run out
- 2. Virtually sense carrier, transmit CTS if clear
- 3. Physically sense carrier, transmit CTS if clear
- 4. Physically and virtually sense carrier, transmit CTS if clear
- 5. Sense for collision, retransmit if needed

802.11 solves the hidden terminal problem, even if D has a more powerful transmitter than B? (True or False? Explanation?)

Mobility Support in the Network Layer

Routers only know the way to each network

If a host moves, its packets will still go to its home!

Why Not Change Addresses?

- Must notify all hosts with open connections
 Used to identify endpoints of connections
 - Used within some transport protocols
- Must also notify all *hosts* using connectionless protocols
- Cannot change hosts with "well known" addresses
- Name server must be updated:
 - Caching of addresses used for scalability
 - Too expensive to update quickly

Location Registry

Mobile nodes away from home must record their current location somewhere

- A database that is explicitly queried:
 - Can be stored anywhere, use special lookup protocol
 - Problem: non-mobile-aware nodes cannot use it?
 - Problem: must look up all addresses, whether or not destination is away from home?
- Send packet normally to the home network:
 - Internetwork routing already knows how to get there
 - Intercept packet there and tunnel to mobile node
 - Problem: Long trip to home for every packet?
 - Problem: Location is unavailable if home is down?

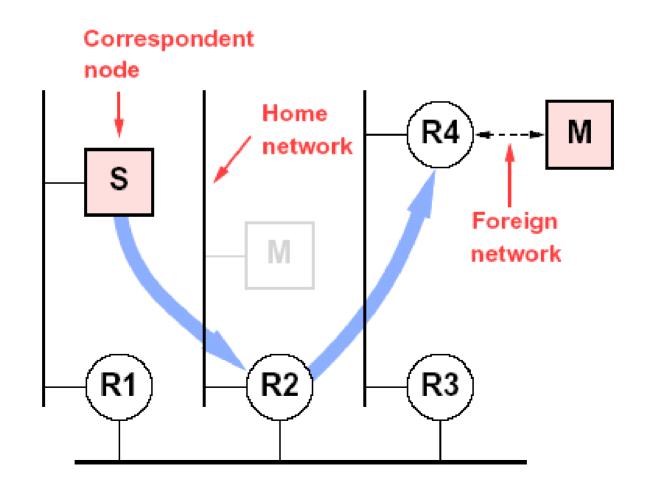
IETF Mobile IP Requirements

RFC 3344

- Transparency:
 - A mobile node continues to use its home address
 - Can still communicate after disconnect and reconnect
 - Can change its point of attachment

• Compatibility:

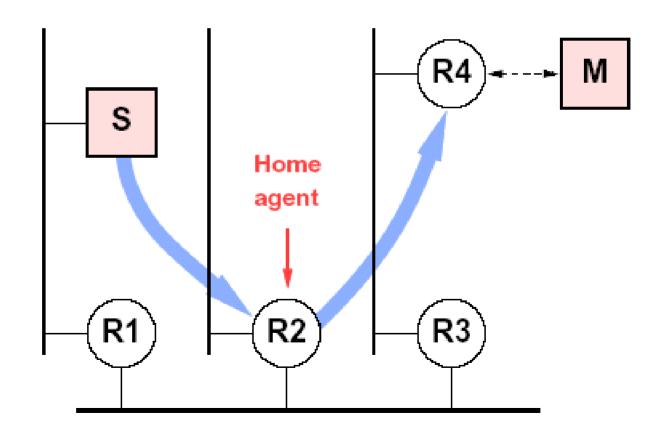
- Supports any lower layer that IP runs on
- No changes required to ordinary hosts and routers
- Mobile node can communicate with unaware nodes


• Security:

- All registration messages must be authenticated

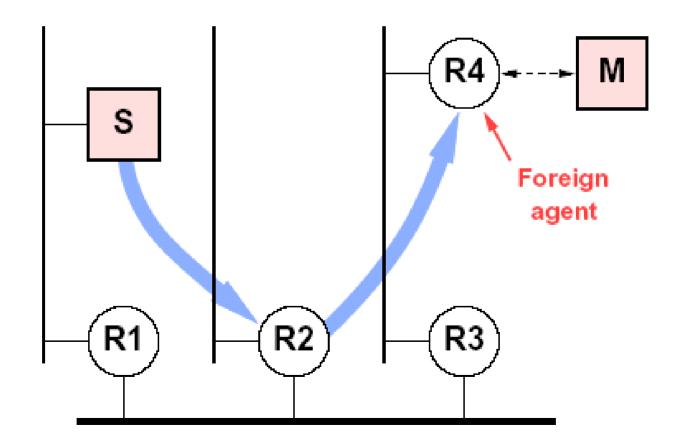
The Mobile Node

Each mobile node has a *home network*


May move and connect to a *foreign network*

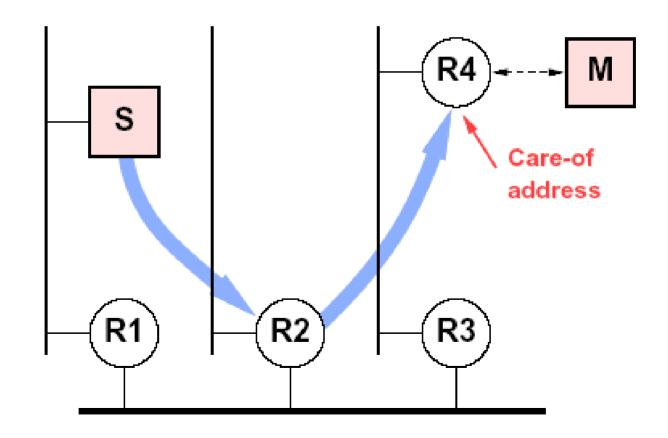
The Home Agent

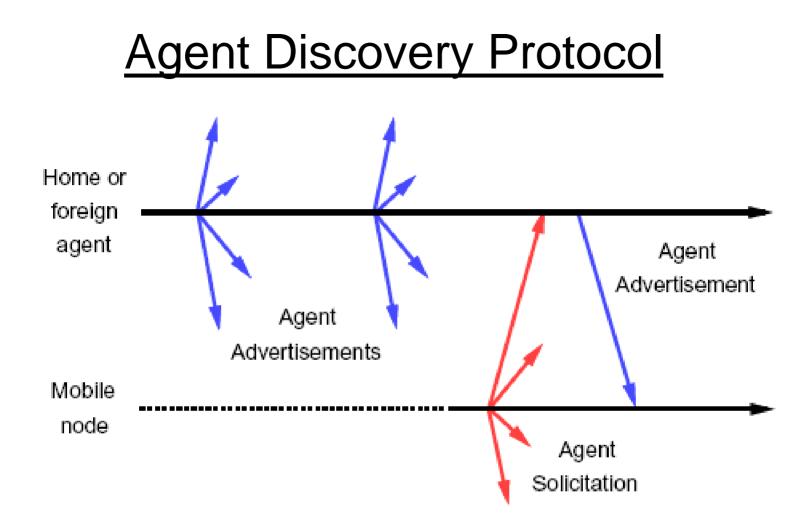
Home agent keeps track of mobile node's care-of address


Intercepts and forwards packets to that address

The Foreign Agent

Foreign agent assists with mobile node's registration


Delivers forwarded packets locally to the mobile node



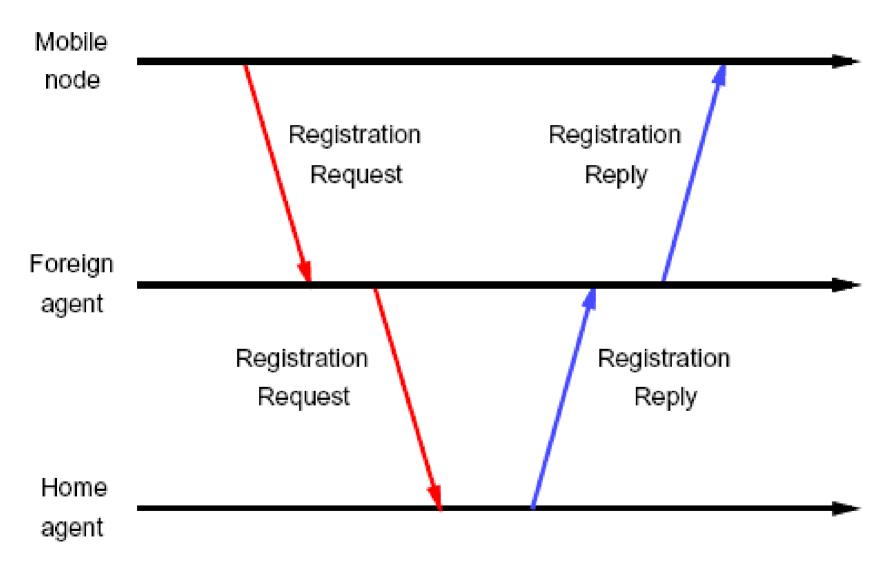
The Care-of Address

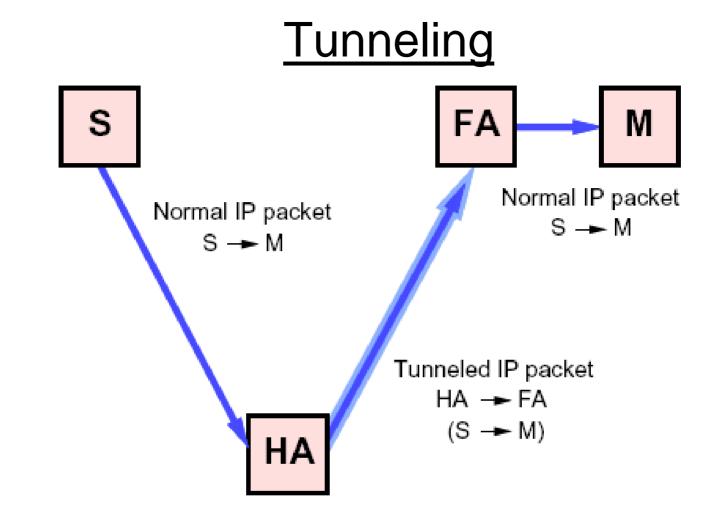
May be foreign agent's own IP address

May be local address for mobile node (e.g., through DHCP)

A mobile node recognizes that it has returned home when it discovers its own home agent

Registration


Registration is used:


- To inform home agent of mobile node's care-of address, and
- To inform foreign agent that the mobile node is visiting

Registration establishes a mobility binding:

- Mobile node's *home address* and current *care-of address*
- Remaining *lifetime* of this registration:
 - Period after which registration expires and is deleted
 - Negotiated during registration
 - Mobile node should reregister before expiration

Registration Through a Foreign Agent

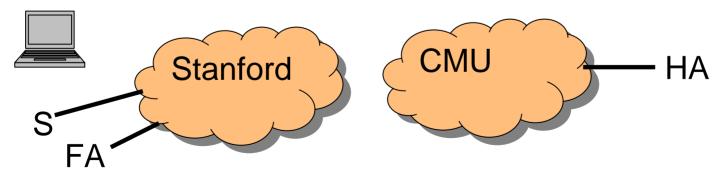
This use of encapsulation known as *tunneling* Path from encapsulator to decapsulator known as tunnel Intermediate routers *need not know* about Mobile IP!

The Need for Authenication

Must authenticate new location information for mobile node

Otherwise, anybody could reroute packets anywhere:

- Passive eavesdropping:
 - Update registry to route somebody's packets to yourself
 - Simply look at them before forwarding to real destination
- Altering messages:
 - Same, but alter them before forwarding them on
- Denial of service:
 - Reroute them to yourself, but don't forward them on
 - Or just reroute them to a bogus address

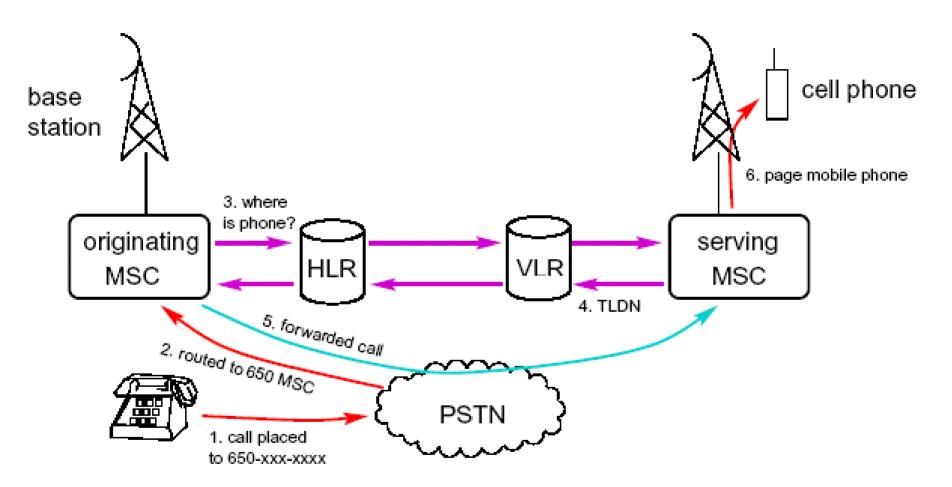

Check Your Understanding

- When a Mobile Node sends packets, what source IP address should it use? Why?
- 1. Its own home-address
- 2. Its care-of address

Check Your Understanding

My laptop is a visiting mobile node (MN) at Stanford. A Stanford node (S) is communicating with my laptop. What path do the packets take?

- 1. S to laptop to S
- 2. S to CMU to CMU HA to Stanford FA to laptop to S
- 3. S to FA to laptop to S
- S to CMU to CMU HA to Stanford FA to laptop to Stanford HA to Stanford FA to S


Mobile IP and Cellular Telephony

The requirements for Mobile IP and mobile telephones are similar!

Can we sketch a protocol for cell phones using our Mobile IP knowledge?

Mobile IP	Telephony	
Mobile Host	cell phone	
Internet	PSTN	public switched telephone net
Home Agent	MSC	mobile switching center
Foreign Agent	MSC	
HA binding table	HLR	home location registry
FA binding table	VLR	visitor location registry
care-of addr	TLDN	temp local directory number

IS-41 Protocol (GSM)

