
Peer-to-Peer
Protocols and Systems

TA: David Murray

15-441 Spring 2006

4/19/2006

2

P2P - Outline

• What is P2P?
• P2P System Types

– 1) File-sharing
– 2) File distribution
– 3) Streaming

• Uses & Challenges

3

Problem: Scalability

• Hundreds of clients => 1 server
– OK

• Thousands of clients => 1 server
– Maybe OK

• Millions/billions of clients => 1 server
– What happens?...

4

5

Solution:
Distribute the cost among the end users

6

Three Classes of P2P Systems

• 1) File-sharing
– (old) Napster (centralized)
– Gnutella (flooding)
– KaZaA (intelligent flooding)
– DHTs/Chord (structured overlay routing)

• 2) File distribution
– BitTorrent

• 3) Streaming
– End System Multicast (a.k.a. Overlay Multicast)

1) P2P File-sharing Systems

8

1) P2P File-sharing Systems
• Centralized Database

– (old) Napster

• Query Flooding
– Gnutella

• Intelligent Query Flooding
– KaZaA

• Structured Overlay Routing
– Distributed Hash Tables

9

File searching

Internet

N1

N2 N3

N6N5

N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

10

File searching

• Needles vs. Haystacks
– Searching for top 40, or an obscure punk

track from 1981 that nobody’s heard of?

• Search expressiveness
– Whole word? Regular expressions? File

names? Attributes? Whole-text search?
• (e.g., p2p gnutella or p2p google?)

11

File-sharing: Framework

• Common Primitives:
– Join : how do I begin participating?

– Publish : how do I advertise my file?

– Search : how do I find a file?

– Fetch : how do I retrieve a file?

12

P2P File-sharing Systems
• Centralized Database

– (old) Napster

• Query Flooding
– Gnutella

• Intelligent Query Flooding
– KaZaA

• Structured Overlay Routing
– Distributed Hash Tables

13

(old) Napster: History

• 1999: Sean Fanning launches Napster
• Peaked at 1.5 million simultaneous

users
• Jul 2001: Napster shuts down
• [2003: Napster’s name reused for an

online music service (no relation)]

14

(old) Napster: Overview

• Centralized Database:
– Join : on startup, client contacts central

server
– Publish : reports list of files to central

server
– Search : query the server => return

someone that stores the requested file
– Fetch : get the file directly from peer

15

Napster: Publish

I have lots of TV show
theme song files!

Publish

insert(XenaThemeSong.mp3, 123.2.21.23)
Insert(HerculesThemeSong.mp3, 123.2.21.23)
...

123.2.21.23

16

Napster: Search

“Where is the Xena
Theme song?”

Reply

search(Xena)
Fetch

Query

17

Napster: Discussion

• Pros:
– Simple
– Search scope is O(1)
– Controllable (pro or con?)

• Cons:
– Server maintains O(N) State
– Server does all processing
– Single point of failure

18

P2P File-sharing Systems
• Centralized Database

– (old) Napster

• Query Flooding
– Gnutella

• Intelligent Query Flooding
– KaZaA

• Structured Overlay Routing
– Distributed Hash Tables

19

Gnutella: History

• In 2000, J. Frankel and T. Pepper from
Nullsoft released Gnutella

• Soon many other clients: Bearshare,
Morpheus, LimeWire, etc.

• In 2001, many protocol enhancements
including “ultrapeers”

20

Gnutella: Overview

• Query Flooding:
– Join : on startup, client contacts a few other

nodes; these become its “neighbors”
– Publish : (no need)
– Search : ask neighbors, who ask their

neighbors, and so on... when/if found, reply
to sender.

• TTL limits propagation
– Fetch : get the file directly from peer

21

“I have XenaEpisode1.mpg”“I have
XenaEpisode1.mpg”

Gnutella: Search

“Where is
XenaEpisode1.mpg?”

Query

Reply

22

Gnutella: Discussion
• Pros:

– Fully de-centralized
– Search cost distributed
– Processing @ each node permits powerful search

semantics

• Cons:
– Search scope is O(N)
– Search time is O(???)
– Nodes leave often, network unstable

• TTL-limited search works well for haystacks.
– For scalability, does NOT search every node. May

have to re-issue query later

23

P2P File-sharing Systems
• Centralized Database

– (old) Napster

• Query Flooding
– Gnutella

• Intelligent Query Flooding
– KaZaA

• Structured Overlay Routing
– Distributed Hash Tables

24

KaZaA: History

• In 2001, KaZaA created by Dutch
company Kazaa BV

• Single network called FastTrack used
by other clients as well: Morpheus,
giFT, etc.

• Eventually protocol changed so other
clients could no longer talk to it

25

KaZaA: Overview

• “Smart” Query Flooding:
– Join : on startup, client contacts a “supernode” ...

may at some point become one itself
– Publish : send list of files to supernode
– Search : send query to supernode, supernodes

flood query amongst themselves.
– Fetch : get the file directly from peer(s); can fetch

simultaneously from multiple peers

26

KaZaA: Network Design
“Super Nodes”

27

KaZaA: File Insert

I have lots of files!

Publish
insert(Xena.mp3,
 123.2.21.23)
Insert(Hercules.mp3,
123.2.21.23)

123.2.21.23

28

KaZaA: File Search

Where is Xena.mp3?

Query

search(Xena.mp3)
-->
123.2.0.18Replies

search(Xena.mp3)
-->
123.2.22.50

123.2.0.18

123.2.22.50

29

KaZaA: Fetching

• More than one node may have requested file...
• How to tell?

– Must be able to distinguish identical files
– Not necessarily same filename
– Same filename not necessarily same file...

• Use Hash of file
– KaZaA uses its own “UUHash”: fast, but not secure
– Alternatives: MD5, SHA-1

• How to fetch?
– Get bytes [0..1000] from A, [1001...2000] from B
– Alternative: Erasure Codes

30

KaZaA: Discussion

• Pros:
– Tries to take into account node heterogeneity:

• Bandwidth
• Host Computational Resources
• Host Availability (?)

– Rumored to take into account network locality

• Cons:
– Mechanisms easy to circumvent
– Still no real guarantees on search scope or search time

• Similar behavior to Gnutella, but better.

31

Stability and Superpeers

• Why supernodes?
– Query consolidation

• Many connected nodes may have only a few files
• Propagating a query to a sub-node would take more b/w

than answering it yourself

– Caching effect
• Requires network stability

• Supernode selection is time-based
– How long you’ve been on is a good predictor of

how long you’ll be around.

32

P2P File-sharing Systems
• Centralized Database

– (old) Napster

• Query Flooding
– Gnutella

• Intelligent Query Flooding
– KaZaA

• Structured Overlay Routing
– Distributed Hash Tables

33

Distributed Hash Tables

• Academic answer to P2P
• Goals

– Guaranteed lookup success
– Provable bounds on search time
– Provable scalability

• Makes some things harder
– Fuzzy queries / full-text search / etc.

• Read-write, not read-only
• Hot Topic in networking since introduction in

~2000/2001

34

DHT: Overview

• Abstraction : a distributed “hash-table” (DHT)
data structure:

– put(id, item);
– item = get(id);

• Implementation : nodes in system form a
distributed data structure

– Can be Ring, Tree, Hypercube, Skip List, Butterfly
Network, ...

35

DHT: Overview (continued)

• Structured Overlay Routing:
– Join : On startup, contact a “bootstrap” node and integrate

yourself into the distributed data structure; get a node id
– Publish : Route publication for file id toward a close node id

along the data structure
– Search : Route a query for file id toward a close node id.

Data structure guarantees that query will meet the
publication. (Note: cannot do keyword search)

– Fetch : Two options:
• Publication contains actual file => fetch from where query stops
• Publication says “I have file X” => query tells you 128.2.1.3 has

X, use IP routing to get X from 128.2.1.3

36

DHT: Example – Chord

• Associate to each node and file a unique id in
an uni-dimensional space (a Ring)

– E.g., pick from the range [0...2m]
– Usually the hash of the file or IP address

• Properties:
– “It allows a distributed set of participants to agree

on a single node as a rendezvous point for a given
key, without any central coordination.” (Chord site)

– Can find data using O(log N) messages, where N
is the total number of nodes

• (Why? We’ll see…)
from MIT in 2001

37

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

38

DHT: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

39

DHT: Chord “Finger Table”

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

• Entry i in the finger table of node n is the first node that succeeds or
equals n + 2i

• In other words, the ith finger points 1/2n-i way around the ring
• (This is what makes O(log N) messages for a retrieval possible!)

40

DHT: Chord Join

• Assume an identifier space [0..8]

• Node n1 joins
0

1

2

3
4

5

6

7

i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

41

DHT: Chord Join

• Node n2 joins
0

1

2

3
4

5

6

7

i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

42

DHT: Chord Join

• Nodes n0, n6 join
0

1

2

3
4

5

6

7

i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

43

DHT: Chord Join

• Nodes:
n1, n2, n0, n6

• Items:
f7, f2

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

44

DHT: Chord Routing

• Upon receiving a query for
item id, a node:

• Checks whether stores the
item locally

• If not, forwards the query to
the largest node in its
successor table that does
not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

45

DHT: Chord Summary

• Routing table size?
–Log N fingers

• Routing time?
–Each hop expects to 1/2 the distance to the

desired id => expect O(log N) hops.

46

DHT: Discussion

• Pros:
– Guaranteed Lookup
– O(log N) per node state and search scope

• Cons:
– Does *not* support keyword search
– No one uses them? (only one file sharing

app)
– Supporting non-exact match search is hard

47

1) P2P File-sharing: Summary

• Many different styles; remember pros and cons of
each
– centralized, flooding, intelligent flooding, overlay routing

• Lessons learned:
– Single points of failure are very bad
– Flooding messages to everyone is bad
– Underlying network topology is important
– Not all nodes need be equal
– Need incentives to discourage freeloading
– Privacy and security matter
– Structure can provide theoretical bounds and guarantees

2) P2P File Distribution Systems

(i.e. BitTorrent)

49

BitTorrent: History

• In 2002, B. Cohen debuted BitTorrent
• Key Motivation:

– Popularity exhibits temporal locality (Flash Crowds)
– E.g., Slashdot effect, CNN on 9/11, new movie/game

release

• Focused on Efficient Fetching, not Searching:
– Distribute the same file to all peers
– Single publisher, multiple downloaders

• Has many “real” publishers:
– Example: Blizzard Entertainment uses it for World of

Warcraft update distribution

50

BitTorrent: Overview
• Focused in efficient fetching, not searching
• Swarming:

– Join : contact centralized “tracker” server, get a list
of peers.

– Publish : Run a tracker server.
– Search : n/a (need to find elsewhere, i.e. Google)
– Fetch : Download chunks of the file from your

peers. Upload chunks you have to them.

• Improvements from old Napster-era:
– Chunk based downloading; few large files
– Anti-freeloading mechanisms

51

BitTorrent: Publish/Join
Tracker

52

BitTorrent: Fetch

53

BitTorrent: Summary

• Pros:
– Works reasonably well in practice
– Gives peers incentive to share resources;

avoids freeloaders

• Cons:
– No search; only content distribution
– Central tracker server needed to bootstrap

swarm

3) P2P Streaming Systems

(i.e. Overlay Multicast a.k.a.
End System Multicast)

55

Live Broadcast: Pre-Internet

• Tower/Cable/Satellite TV, Radio
• Problems

– Limitations
• # of channels
• Physical reach

– Cost
• Content production monopolized by big corps.
• Content distribution monopolized by big corps.

56

Live Internet Broadcast: Pre-P2P

• Unicast streaming
– Small-scale video conferencing
– Large-scale streaming (AOL Live, etc.)

• Problems
– Unicast streaming requires lots of

bandwidth
• Example: AOL webcast of Live 8 concert, July

2, 2005: 1500 servers in 90 locations = $$$

57

Solution...?
Use IP Multicast!...?

58

Solution: IP Multicast?

• On a single LAN: GREAT!
– Can distribute traffic to everyone at once without

duplicating streams, set TTL=1, no problem!

• Cross-LAN…Problem �
– Requires multicast-enabled routers

• Must allocate resources toward processing multicast
packets

• As a result, *MANY, MANY* computers can’t receive IP
multicast packets from outside their LAN

59

Solution (again!):
Don’t depend on routers…

Distribute the cost among the end users

60

Internet broadcasting Structure

Router
Source
Application end-point

61

End System Multicast (ESM)
(a.k.a Overlay Multicast)

+ Instantly deployable
+ Enables ubiquitous
 broadcast

Router
Source
Application end-point

62

Example ESM Tree
http://esm.cs.cmu.edu

63

Single Overlay Distribution
Tree

B

C

E

F

D

A

G

64

Single Overlay Distribution
Tree

B

C

E

F

D

A

G

IN: n kb/sec

OUT: 2n kb/sec

65

Multiple Overlay
Distribution Trees

B

C

E

F

D

A

G

66

Multiple Overlay
Distribution Trees

B

C

E

F

D

A

G

67

Multiple Overlay
Distribution Trees

B

C

E

F

D

A

G

68

Multiple Overlay
Distribution Trees

B

C

E
F

D
A

G D

E G

B A F C

A

B C

F G D E

N kb/sec

N/2 kb/sec N/2 kb/sec

69

My Research with ESM

• Can we combine the best parts of
multicast with ESM?
– My solution:

• Integrate LAN Multicast (i.e. IP Multicast with
TTL=1) with ESM

• Each LAN has 1 or more forwarders from the
outside receiving data which gets forwarded on
multicast with TTL=1

• “Nodes” of overlay trees are now LANs instead
of individual hosts

70

ESM + LAN Multicast

LAN B

LAN C

LAN E

LAN F

LAN D

LAN A

LAN G

71

P2P Systems: Summary

• 3 types of P2P systems
– File-sharing

• Centralized ((old) Napster), Flooding (Gnutella), Intelligent Flooding (KaZaA)
Overlay Routing (DHTs/Chord)

– File distribution
• BitTorrent

– Streaming
• End System Multicast a.k.a. Overlay Multicast

• Lessons
– Single points of failure are very bad
– Underlying network topology is important
– Not all nodes are equal
– Can’t depend on routers to satisfy all of your networking desires

• Room for growth
– Privacy & Security
– Research is ongoing

Extra Slides
(From previous P2P lectures)

73

KaZaA: Usage Patterns
• KaZaA is more than

one workload!
– Many files < 10MB

(e.g., Audio Files)
– Many files > 100MB

(e.g., Movies)

from Gummadi et al., SOSP 2003

74

KaZaA: Usage Patterns (2)
• KaZaA is not Zipf!

– FileSharing:
“Request-once”

– Web: “Request-
repeatedly”

from Gummadi et al., SOSP 2003

75

KaZaA: Usage Patterns (3)

• What we saw:
– A few big files consume most of the bandwidth
– Many files are fetched once per client but still very popular

• Solution?
– Caching!

from Gummadi et al., SOSP 2003

76

Freenet: History

• In 1999, I. Clarke started the Freenet
project

• Basic Idea:
– Employ Internet-like routing on the overlay

network to publish and locate files

• Addition goals:
– Provide anonymity and security
– Make censorship difficult

77

Freenet: Overview

• Routed Queries:
– Join : on startup, client contacts a few other

nodes it knows about; gets a unique node id
– Publish : route file contents toward the file id. File

is stored at node with id closest to file id
– Search : route query for file id toward the closest

node id
– Fetch : when query reaches a node containing file

id, it returns the file to the sender

78

Freenet: Routing Tables
• id – file identifier (e.g., hash of file)
• next_hop – another node that stores the file id
• file – file identified by id being stored on the local node

• Forwarding of query for file id
– If file id stored locally, then stop

• Forward data back to upstream requestor
– If not, search for the “closest” id in the table, and

forward the message to the corresponding
next_hop

– If data is not found, failure is reported back
• Requestor then tries next closest match in routing

table

id next_hop file

…
…

79

Freenet: Routing

 4 n1 f4
12 n2 f12
 5 n3

 9 n3 f9

 3 n1 f3
14 n4 f14
 5 n3

14 n5 f14
13 n2 f13
 3 n6

n1 n2

n3

n4

 4 n1 f4
10 n5 f10
 8 n6

n5

query(10)

1

2

3

4

4’

5

80

Freenet: Routing Properties

• “Close” file ids tend to be stored on the same
node
– Why? Publications of similar file ids route toward

the same place

• Network tend to be a “small world”
– Small number of nodes have large number of

neighbors (i.e., ~ “six-degrees of separation”)

• Consequence:
– Most queries only traverse a small number of hops

to find the file

81

Freenet: Anonymity & Security

• Anonymity
– Randomly modify source of packet as it traverses the

network
– Can use “mix-nets” or onion-routing

• Security & Censorship resistance
– No constraints on how to choose ids for files => easy to

have to files collide, creating “denial of service” (censorship)
– Solution: have a id type that requires a private key signature

that is verified when updating the file
– Cache file on the reverse path of queries/publications =>

attempt to “replace” file with bogus data will just cause the
file to be replicated more!

82

Freenet: Discussion

• Pros:
– Intelligent routing makes queries relatively short
– Search scope small (only nodes along search path

involved); no flooding
– Anonymity properties may give you “plausible

deniability”

• Cons:
– Still no provable guarantees!
– Anonymity features make it hard to measure,

debug

