15-441 Computer Networks

Link State Routing

Professor Hui Zhang

hzhang@cs.cmu.edu

1

Forwarding and Routing

* Forwarding

- Examine header to determine intended destination
- Look up in table to determine next hop in path
- Send packet out appropriate port

Routing

- Each router *forwards* packet to next router
- Overall goal is to *route* packet from source to destination
 - Requires consistent forwarding tables at different nodes
 - Distributed computation in dynamic environments

Graph Model

- Represent each router as node
- Direct link between routers represented by edge
 - asymmetric links \Rightarrow directed graph
- Edge "cost" c(x,y) denotes measure of difficulty of using link
- Task
 - Determine least cost path from every node to every other node
 - Path cost d(x,y) = sum of link costs

Shortest Path Routing Table

Та	ble for	A	Та	ble for	В	Та	able for	· C	Та	ble for	D	Table for E Tab		able for F			
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
Α	0	Α	Α	3	Α	Α	5	F	Α	6	В	Α	2	Α	Α	4	В
В	3	В	В	0	В	В	2	F	В	3	В	В	4	F	В	1	В
С	5	В	С	2	F	С	0	С	С	1	С	С	4	F	С	1	С
D	6	В	D	3	D	D	1	D	D	0	D	D	5	F	D	2	С
Е	2	Е	Е	4	F	Е	4	F	E	5	С	Е	0	Е	Е	3	Е
F	4	В	F	1	F	F	1	F	F	2	С	F	3	F	F	0	F

Think Out of the Box

- What are the limitations of the architecture with the following?
 - Destination-based forwarding
 - Shortest-path routing

Ways to Compute Shortest Paths

Centralized

- Collect graph structure in one place
- Use standard graph algorithm
- Disseminate routing tables

Partially Distributed

- Every node collects complete graph structure
- Each computes shortest paths from it
- Each generates own routing table
- "Link-state" algorithm

Fully Distributed

- No one has copy of graph
- Nodes construct their own tables iteratively
- Each sends information about its table to neighbors
- "Distance-Vector" algorithm

Issues to Think About in Your Project

- How to tell a link or node fails?
- How to send control packets to neighbors?

Link State Protocol Concept

- Every Node Gets Complete Copy of Graph
 - Every node "floods" network with data about its outgoing links
- Every Node Computes Routes to Every Other Node
 - Using single-source, shortest-path algorithm
- Every Node Updates Own Routing Table
- Process Performed Whenever Needed
 - When connections die / reappear
 - Periodically

Least Cost Routes from Node A

Table for A					
Dest	Cost	Next Hop			
Α	0	Α			
В	3	В			
С	5	В			
D	6	В			
E	2	E			
F	4	В			

***** Properties

- Some set of shortest paths forms tree
 - Shortest path spanning tree
- Solution not unique
 - E.g., A-B-D also has cost 6

Dijkstra's Algorithm

& Edsgar Dijkstra (1930--2002)

- Pioneer in understanding mathematical basis for computer science
- Fundamental ideas in concurrency (e.g., semaphores)

Given

- Graph with source node s and edge costs c(u,v)
- Determine least cost path from s to every node v
- Shortest Path First Algorithm
 - Traverse graph in order of least cost from source

A Link State Routing Algorithm

Dijkstra's algorithm

- Net topology, link costs known to all nodes
 - Accomplished via "link state flooding"
 - All nodes have same info
- Compute least cost paths from one node ('source") to all other nodes
- Iterative: after k iterations, know least cost paths to k closest destinations

Notations

- c(i,j): link cost from node *i* to
 j; cost infinite if not direct
 neighbors
- D(v): current value of cost of path from source to destination v
- • p(v): predecessor node along path from source to v, that is next to v
- S: set of nodes whose least cost path definitively known

Dijsktra's Algorithm

1 Initialization:

2
$$S = \{A\};$$

- 3 for all nodes v
- 4 if v adjacent to A

5 then
$$D(v) = c(A,v)$$
;

6 else
$$D(v) = \infty$$
;

7

8 **Loop**

- 9 find w not in S such that D(w) is a minimum;
- 10 add w to S;
- 11 update D(v) for all v adjacent to w and not in S:

12
$$D(v) = min(D(v), D(w) + c(w,v));$$

II new cost to v is either old cost to v or known

II shortest path cost to w plus cost from w to v

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
→ 0	А	2,A	5,A	1,A	∞	∞
1						
2						
3						
4						
5						

1	Initialization:
2	S = {A};
3	for all nodes v
4	if v adjacent to A
5	then $D(v) = c(A, v)$
6	else $D(v) = \infty$;

Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	А	2,A	5,A	1,A	∞	∞
→ 1	AD		4,D		2,D	∞
2						
3						
4						
5						

• • •	
▶ 8	Loop
9	find w not in S s.t. D(w) is a minimum;
10	add w to S;
11	update D(v) for all v adjacent
	to w and not in S:
12	2 $D(v) = min(D(v), D(w) + c(w,v));$
-13	until all nodes in S;

S	tep	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	∞	∞
	1	AD		4,D		2,D	∞
	2	ADE		3,E			4,E
	3						
	4						
	5						

•	8	L	0	op

. . .

- 9 find w not in S s.t. D(w) is a minimum;
- 10 add w to S;
- 11 update D(v) for all v adjacent to w and not in S:

12
$$D(v) = min(D(v), D(w) + c(w,v));$$

S	tep	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	∞	∞
	1	AD		4,D		2,D	∞
	2	ADE		3,E			4,E
	3	ADEB					
	4						
	5						

▶ 8 Loop

- 9 find w not in S s.t. D(w) is a minimum;
- 10 add w to S;
- 11 update D(v) for all v adjacent to w and not in S:

12
$$D(v) = min(D(v), D(w) + c(w,v));$$

S	tep	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	∞	∞
	1	AD		4,D		2,D	∞
	2	ADE		3,E			4,E
	3	ADEB					
-	4	ADEBC					
	5						

▶ 8 Loop

- 9 find w not in S s.t. D(w) is a minimum;
- 10 add w to S;
- 11 update D(v) for all v adjacent to w and not in S:

12
$$D(v) = min(D(v), D(w) + c(w,v));$$

St	tep	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	∞	∞
	1	AD		4,D		2,D	∞
	2	ADE		3,E			4,E
	3	ADEB					
	4	ADEBC					
-	5	ADEBCF					

•	8	L	0	0	p
				_	-

. . .

1

- 9 find w not in S s.t. D(w) is a minimum;
- 10 add w to S;
- 11 update D(v) for all v adjacent to w and not in S:

2
$$D(v) = min(D(v), D(w) + c(w,v));$$

Complexity

Assume a network consisting of n nodes

- Each iteration: need to check all nodes, w, not in S
- n*(n+1)/2 comparisons: O(n²)
- More efficient implementations possible: O(n*log(n))

Oscillations

Assume link cost = amount of carried traffic

How can you avoid oscillations?

OSPF Routing Protocol

* Open

Open standard created by IETF

Shortest-Path First

• Another name for Dijkstra's algorithm

Most Prevalent Intradomain Routing Protocol

OSPF Reliable Flooding

* Transmit Link State Advertisements

- Originating Router
 - Typically, minimum IP address for router
- Link ID
 - ID of router at other end of link
- Metric
 - Cost of link
- Link-State Age
 - Incremented each second
 - Packet expires when reaches 3600
- Sequence Number
 - Incremented each time sending new link information

OSPF Flooding Operation

***** Node X Receives LSA from Node Y

- With Sequence Number q
- Looks for entry with same origin/link ID

Cases

- No entry present
 - Add entry, propagate to all neighbors other than Y
- Entry present with sequence number p < q
 - Update entry, propagate to all neighbors other than Y
- Entry present with sequence number p > q
 - Send entry back to Y
 - To tell Y that it has out-of-date information
- Entry present with sequence number p = q
 - Ignore it

Flooding Issues

When Should it be Performed

- Periodically
- When status of link changes
 - Detected by connected node

What Happens when Router Goes Down & Back Up

- Sequence number reset to 0
 - Other routers may have entries with higher sequence numbers
- Router will send out LSAs with number 0
- Will get back LSAs with last valid sequence number p
- Router sets sequence number to p+1 & resends

Flooding Issues (Cont.)

What if Sequence Number Wraps Around

Use circular comparison

- Force sequence number back to 0
 - OSPF v2
 - With 32-bit counter, doesn't happen very often

Load Balancing Motivation

- From any source, routes will follow spanning tree
- Single link may be chosen for many different sources
- Doesn't spread traffic over all available links

OSPF Load Balancing

Table for B		
Dst	Cst	Нор
Α	3	Α
В	0	В
С	2	F
D	3	D,F
E	4	A,F
F	1	F

- Modification to Dijkstra's algorithm
 - Keep track of all links giving optimum cost d(v)
 - Only get multiple routes when exactly same cost

Routing

- Alternate link used
- Tends to cause packets to arrive out of order

Type of Service (TOS) Metrics

* Link Characteristic Vary in Multiple Dimensions

- Latency
- Throughput
- Cost
- Reliability

Example Example

- Satellite link
 - High throughput, long latency
- Fiber optic link
 - Lower throughput, low latency

Routing Requirements Vary

- Typing at terminal: minimize latency for short packet
- Sending video data: maximize throughput

Proposed OSPF Support for TOS

Support up to Five Different Routing Metrics

- Normal service
 - Don't do anything extreme
- Minimize cost
 - For networks that charge for traffic
- Maximize reliability
- Maximize throughput
- Minimize delay

Link Can Have Different LSA for each TOS

- Expressed in units where lower value is better
- Path cost either sum or maximum of link costs

OSPF Routing Hierarchy

Partition Network into "Areas"

- Router maintains link states of nodes within its area
- Nodes in lower-level area use area-border router as default router
- Backbone nodes can "summarize" routes within area