
Advice on Programming
Sept. 4, 2003

TopicsTopics
� Robust Programming
� Version Control
� Using scripting languages

Class02b

15-441

– 2 – 15-441, Fall 2003

About This Lecture

Version control / Source controlVersion control / Source control
� Presented today: RCS

� (by a rogue instructor)
� Rogue instructor's opinion of RCS: extremelyextremelyextremelyextremelyextremelyextremelyextremelyextremelyextremelyextremely obsolete

� (Though it can be used effectively as a building block)
� Why will we discuss RCS today?

� “Received wisdom” says...
» It's really hard to get students to use source control.
» Many refuse.
» The quickest thing to explain is RCS.
» Maybe if we describe something simple people might use it.

– 3 – 15-441, Fall 2003

About This Lecture

Hope, fear, loathing, ...Hope, fear, loathing, ...
� We hope you will use something to safeguard your sanity
� Easiest thing to explain is RCS

� RCS is fine for Project 1
� Your “friends” may have already introduced you to CVS

� “Friends don't let friends branch CVS”
� It's fine with us if you use CVS

» (necessary evolutionary step, like tube worms)
� For a conceptually clearer time...

� Try PRCS
� It's small (not as small as RCS, not as big as CVS)
� Most-important features of source control are default

behaviors!
� See last semester's PRCS intro from 15-410, posted on 441 site

– 4 – 15-441, Fall 2003

Client /
Server
Session

Client/Server Code
Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

– 5 – 15-441, Fall 2003

Robustness Principles

ClientClient
� Nothing user does/types should make program crash

� Must perform complete checking for user errors

ServerServer
� Nothing a client does should cause server to malfunction

� Possibly malicious clients

Things to Worry AboutThings to Worry About
� Error return codes by system calls
� String overflows
� Malformed messages
� Memory/resource leaks

� Especially for server

– 6 – 15-441, Fall 2003

Echo Client Main Routine
#include "csapp.h"

/* usage: ./echoclient host port */
int main(int argc, char **argv)
{
 int clientfd, port;
 char *host, buf[MAXLINE];
 rio_t rio;

 host = argv[1];
 port = atoi(argv[2]);

 clientfd = Open_clientfd(host, port);
 Rio_readinitb(&rio, clientfd);

 while (Fgets(buf, MAXLINE, stdin) != NULL) {
 Rio_writen(clientfd, buf, strlen(buf));
 Rio_readlineb(&rio, buf, MAXLINE);
 Fputs(buf, stdout);
 }
 Close(clientfd);
 exit(0);
}

No checking of
command line
arguments

Wrappers exit on
errorfgets does not

insert \n when
string too long

– 7 – 15-441, Fall 2003

Robust Version of Echo Client (1)
#include <limits.h>

/* To demonstrate truncation */
#define LINELEN 20

/* Maximum number of errors to tolerate before exiting */
int errlimit = 5;

void errcheck(char *message, int fatal)
{
 if (--errlimit == 0 || fatal) {
 fprintf(stderr, "Error: %s. Exiting\n", message);
 exit(1);
 }
 fprintf(stderr, "Error: %s. Continuing\n", message);
}

void usage(char *progname) {
 fprintf(stderr, "Usage: %s host port\n", progname);
 exit(0);
}

– 8 – 15-441, Fall 2003

Robust Version of Echo Client (2)
int main(int argc, char **argv)
{
 int clientfd, port;
 char *host, buf[LINELEN];
 rio_t rio;

 if (argc != 3)
 usage(argv[0]);

 host = argv[1];
 port = atoi(argv[2]);

 if (port <= 0 || port > SHRT_MAX)
 errcheck("Invalid Port", 1);

 clientfd = open_clientfd(host, port);
 if (clientfd < 0)
 errcheck("Couldn't open connection to server", 1);

 rio_readinitb(&rio, clientfd);
 ...

– 9 – 15-441, Fall 2003

Robust Version of Echo Client (3)
 ...
 while (fgets(buf, LINELEN, stdin) != NULL) {
 int n;
 if (strlen(buf) == LINELEN-1 && buf[LINELEN-1] != '\n')
 strcpy(buf+LINELEN-5, "...\n"); /* Truncate string */
 if (rio_writen(clientfd, buf, strlen(buf)) < 0) {
 errcheck("Failed to send message", 0);
 continue;
 }
 if ((n = rio_readlineb(&rio, buf, LINELEN) <= 0)) {
 if (n == 0)

errcheck("Unexpected EOF from server\n", 1);
 else

errcheck("Failed to receive reply from server", 0);
 }
 if (fputs(buf, stdout) < 0)
 errcheck("Couldn't print reply\n", 0);
 }
 ...

– 10 – 15-441, Fall 2003

Robust Version of Echo Client (4)
 ...
 if (close(clientfd) < 0)
 errcheck("Couldn't close connection to server", 1);
 exit(0);
}

– 11 – 15-441, Fall 2003

Design Issues

Error Classification & RecoveryError Classification & Recovery
� Fatal vs. nonfatal errors

� Server code should only have fatal error when something is
wrong on server machine

� What to do when when encounter nonfatal error
� Skip to next activity
� Server might close connection to malfunctioning client

Other Types of ErrorsOther Types of Errors
� Client dormant too long

� Add timeouts to code
� Gets very messy

� Denial of service attacks
� Difficult to detect and/or handle

– 12 – 15-441, Fall 2003

Version Control

Typical Problems in Managing Software ProjectTypical Problems in Managing Software Project
� Multiple people simultaneously edit single file

� Want to prevent this or have some way to merge updates
� Bug appears in new version that was not detected in earlier

version
� Want to run tests on older version

� Customer reports problem with program. Turns out he/she
has old version of code

� Want to back up to earlier version of program
� Code evolves along incompatible paths by two groups

� Want to reconcile into common version

SolutionSolution
� Implement some form of automatic version control

– 13 – 15-441, Fall 2003

RCS

Revision Control SystemRevision Control System
� Basic Unix program(s) for managing software project
� Written by Walter Tichy, CMU PhD 1980

Basic IdeaBasic Idea
� Code file foo.c has RCS version foo.c,v

� Complete history of all versions of file
� Stored in compacted form

� User can “check out” copy of file
� Either read-only or writable
� Even when writable, only single user can do so
� Can check out older versions of program

� When file modified, can “check in” file
� Increments version number
� Becomes available for other users to check out

– 14 – 15-441, Fall 2003

RCS Example

Code for Echo ServerCode for Echo Server

% ls
Makefile csapp.c csapp.h echoserver.c

% mkdir RCS # Directory for RCS files

% ci Makefile csapp.c csapp.h echoserver.c
RCS prompts for descriptions of files
RCS/echoserver.c,v <-- echoserver.c
enter description, terminated with single
'.' or end of file:
NOTE: This is NOT the log message!
>> Sequential echo server
>> .
initial revision: 1.1
done

%ls
RCS # Files are gone!

– 15 – 15-441, Fall 2003

RCS Example (cont.)
% ls RCS
Makefile,v csapp.c,v csapp.h,v echoserver.c,v

% co RCS/*,v # Check out read-only copies of all files

% ls
Makefile csapp.c csapp.h echoserver.c

% co -l echoserver.c # Check out writable version
Now edit echoserver.c to make it concurrent

$ ci -r2.1 echoserver.c # Check in with major version change
RCS/echoserver.c,v <-- echoserver.c
new revision: 2.1; previous revision: 1.1
enter log message, terminated with single '.' or end of file:
>> Concurrent echo server using I/O multiplexing
>> .
done

– 16 – 15-441, Fall 2003

Getting Revision History
% rlog echoserver.c
RCS file: RCS/echoserver.c,v
Working file: echoserver.c
head: 2.1
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 2; selected revisions: 2
description:
Sequential echo server

revision 2.1
date: 2003/09/03 21:08:58; author: bryant; state: Exp; lines:
+118 -27
Concurrent echo server using I/O multiplexing

revision 1.1
date: 2003/09/03 21:00:07; author: bryant; state: Exp;
Initial revision

– 17 – 15-441, Fall 2003

Retrieving Earlier Version

% co -r1.1 echoserver.c
RCS/echoserver.c,v --> echoserver.c
revision 1.1
done

– 18 – 15-441, Fall 2003

For More Information

Unix Man PagesUnix Man Pages
� rcsinfo

� Overview of RCS
� ci

� Check-in program
� co

� Check-out program
� rcs

� Overall control

RCS has lots of other features. These are only the RCS has lots of other features. These are only the
basics.basics.

– 19 – 15-441, Fall 2003

Scripting Languages

General FeaturesGeneral Features
� Easy to write “quick & dirty” code

� Minimal type checking
� Interpretive

� Good support for strings, regular expressions, invoking
other programs

– 20 – 15-441, Fall 2003

Scripting Languages

ExamplesExamples
� awk, shell code

� Developed originally at Bell Labs. Not very popular

� tcl
� Developed by John Ousterhout (CMU PhD 1980)
� Nice integration with tk graphics interface package

� perl
� Developed by Larry Wall to aid system administration
� Big & messy, but very powerful

� python
� Developed by Guido van Rossum
� Indentation is significant

» (ouch)

– 21 – 15-441, Fall 2003

Echo Client in Perl
#!/usr/bin/perl -w

use sigtrap;
use IO::Socket;

$host = $ARGV[0];
$port = $ARGV[1];

$socket = IO::Socket::INET->new("$host:$port")
 || die("Couldn't connect to $host:$port: $!\n");

while (<STDIN>) {
 $line = $_;
 print $socket $line;
 $reply = <$socket>;
 print $reply;
}

