15-441 Spring 2006: Project # 3
Reliable Sliding-Window Transport
Out: Monday, Mar 27th, 2006

Due: Friday, April 28, 2006, 11:59 pm
Lead TA: Mike Cui

1 Introduction

In the previous projects, you implemented an application layer service (TFTP), and the routing layer (IP
forwarding and routing). In this project you will implement a transport layer. You will implement a reliable
transport layer similar to TCP.

IMPORTANT: If your IP forwarding code does not already meet the requirements of Project 2, you must
fix the remaining bugs and implement the remaining features in order to successfully complete this project.
If you believe your IP forwarding code is hopelessly broken, please bring it to our attention as soon as
possible. Your routing daemon needt be working to complete this project; static routes will suffice.

2 Logistics

2.1 Handouts
All files for this project can be retrieved from
/afs/cs/academic/class/15441-s06/project3

In the rest of the document, we refer to this directorygpojdir>

The support code has been slightly modified, but it should not affect your Project 2 implementations, and
should link with your code seamlessly.

We reserve the right to change the support code as the project progresses to fix bugs :) and to introduce new
features that will help you debug your code.

2.2 Groups

Since you will be extending the code written for Project 2, we assume that all groups will remain the same.
If you need to change your group for whatever reason, you must come and talk td-tiddoy March 31
and no later.

You are not permitted to share code of any kind with other groups. Each member of the group is responsible
for both sharing the work equally, and for studying the work of their partner to the point they understand

it and can explain it unassisted. Please also indicate a breakdown of what each group member did (see
Section 5).

3 Your Assignment

In this assignment, you will implement a reliable, in-order-delivery transport protocol. The transport layer
provides the means for delivering data from one network application to another. Your transport protocol
must support the following:

¢ Multiple simultaneous connections concurrently. This means you will need to multiplex and demulti-
plex using port numbers and use proper synchronization mechanisms to ensure thread-safety.

¢ Reliability. Your protocol must detect lost packets and retransmit them. You will implement a reliable
sliding-window transport protocol that allows multiple packets in flight at the same time. This has
better performance than a “stop-and-wait” protocol.

¢ In-order delivery. No duplication or reordering of packets as observed by the user.

e Flow control through window advertisement

3.1 Read Chapter 5 in the book

Section 5.1 (UDP) discusses how to multiplex and demultiplex using ports. You should start your transport
protocol by implementing this. Section 5.2 (TCP) discusses the details of the different components of TCP:
Section 5.2.2 discusses the packet format for TCP, which you will use. Section 5.2.3 discusses connection
establishment and termination. You will spend a large chunk of time getting this right, so read and make sure
you understand this section before attempting to implement it. Section 5.2.4 discusses the sliding window
mechanism. This is the second piece that you will spend a lot of time on. Note that you will be using a
packet-streannot abyte-streanas this section describes. This means sequence numbers will be associated
with packets, not bytes and retransmissions will be at the level of packets. You do not need to worry about
the sequence number wraparound problem in this assignment (make sure your initial sequence numbers are
less than half the maximum value, and we will make sure to transfer less than two gigabytes per connection).

You do not need to worry about Nagle’s Algorithm, adaptive retransmission, congestion control, or any
subsequent chapters in the book.

3.2 Timers

Your TCP implementation will need to use three timers: initial connect timer, retransmission timer, and
close timer.

e Theinitial connect timeiis used to detect connection failures. This timer is set when a call to connect
is made and is canceled when TCP reaches the established state. If the timer expires, the connection
should be closed.

e Theretransmission timeis used to detect a packet loss. If this timer expires, then a packet or its
ack has been lost. TCP should retransmit the packet with sequence number one greater than the last
packet acknowledged.

e Theclose timeris used to catch any FINs being retransmitted. Chapter 5.2.3 explains this in more
detail.

To implement timers you will use thameout() anduntimeout() functions defined iimclude/systm.h
Please refer to Section 9.1 of the simulator handout for details of the timer API. The prototypes are listed
below as a reminder:

typedef void (*timeout_t)(void *);
void timeout(timeout_t, void *arg, int ticks);
int untimeout(timeout_t, void *arg);

Suggested timer values are: 30 seconds for the initial connect timer, 3 seconds for the retransmission timer,
and 75 seconds for the close timer. Remember that a kernel tick in the simulator is 500 ms.

3.3 Hooks

You must register your transport protocol with the socket layer in order for it to receive requests based on
system calls issued by user code. dsek _register _transport(&proto _tcp) at initialization

time. Please refer to Section 6 of the simulator handout for details. For this assignment, you do not have to
implement thesendto , recvfrom , andsetsockopt calls, so set these entry points to NULL.

Next, you must call your init function (i.etgp _init()) from init.c in the template/kernel directory.

3.4 Functions

The template/kernel directory hasp.h andtcp.c . Function prototypes are given in these files for

the main functions. You are allowed to change the functions, but you must keep the registered functions
(tcp _socket, tcp _close, tcp _bind, tcp _connect, tcp _accept, tcp _write, and tcp _read)
and their arguments the same.

3.5

Other important points

You must bound the size of tmeceive bufferThe size of the receive buffer determines how much data
transport layer queues at the receiving end, waiting for the data to be consumed by the application.
The size of the receive buffer also defines the maxinmeogiver windowadvertised to the sender.

Your receive buffer should be sized to hold somewhere betwee 16 and 256 packets.

Your protocol should avoid retransmitting more data than is necessary. For example, assume a sender
transmits data segmentsn + 1, n + 2, and data segmentis lost. The acknowledgment number

sent by the receiver would remain at(TCP’s acknowledgment field identifies the next sequence
number expected) even when data segment1 andn + 2 are received (TCP uses a cumulative
acknowledgment scheme). Upon receiving the acknowledgment, filre sender should retransmit

data segment butnotdata segment + 1 andn + 2.

Conceptually, a receive buffer contains two types of segments: in-order segments and out-of-order

segments. In-order segments contain data that are ready to be consumed by the application. Out-of-
order segments are waiting for missing segments with lower sequence numbers, and are not ready to
be consumed by the application. You can choose to put both types of segments in one receive buffer,
or you can break them up into two different buffers. Regardless, the sum of both types of segments

cannot excee@CP.RCVBUESIZE .

If the size of the data given by\&rite() call fits in one transport segment, then send the data as one
segment. If the size of the data is too large to fit in one segment, you need to break up the data into
multiple segments. The size of segment is limited by interface MTU. Optionally you can pack data
from multipleWrite() calls into one transport layer segment, but this is not requirediriée()

of 0 byte data is discarded by your network stack and is not sent over the wire.

aRead() can read any number of bytes of data greater than zero. However, you are not required to
return the exact size of data requested. For example, let us assume you have two in-order segments in
your receive buffer, each with 100 bytes. If an application performsRead() calls, and each call
requests one byte, you must return the first byte from the first segment and then the second byte from
the first segment. On the other hand, if an application requests 120 bytes, you can choose to return
either 100 bytes (the whole first segment) or 120 bytes (the first segment plus 20 bytes of the second
segment). While in theory you could also return seven bytes, or eleven, or some other silly number,
there is no defensible reason for doing so.

For simplicity, the sequence number and acknowledgment number in the transport layer header will be
units of “packet” rather than “byte”. Thus, the transport protocol meket-streanprotocol instead

of a byte-streanprotocol. However, to the application using your transport protocol, it will appear

to be abyte-streanprotocol since the protocol is not required to maintain packet boundaries. The
size of the send buffer and receive buffer are defined in units of packets instead of bytes. These
maximum buffer sizesTICP.SNDBUESIZE and TCP.RCVBUESIZE, respectively) are defined in
<projdir>/include/systm.h

4 Evaluation

We will be grading this project by demo. You will need to sign up for a 20-minute time slot. See the project
web page for detailed information. Late submissions will be handled according to the policy given in the
syllabus. We intend not to extend the due date for Project 3. The point breakdown will be approximately as
follows.

e (60 points) Sliding-window transport

This part of your grade reflects how well you implemented the protocol features we listed above. We
will check if your protocol can handle packet loss, duplication, reordering using test cases and the.
Note that correctness is more important than performance. It is better to have solid working features
than broken features with optimization.

e (15 points) Style
Poor design, documentation, or code structure will reduce your grade by making it hard for you to
produce a working program and hard for the grader to understand it. Compiling errors and warnings
will also reduce your style credits.

¢ (15 points) Demo
We will run a series test cases to check your implementations during the demo. You will be asked
specific questions related with your design and implementations. This part of grade reflects how well
you understand your implementation choices, and the code written jointly with your project partner.

e (10 points) 2 Checkpoints

There will be 2 checkpoints during this lab. Each will be worth 5 points. A brief description is
provided in the “Plan of Attack” section of this handout, but please watch the bboard for specific
details about the checkpoints as their time approaches.

— (April 6th) SYN
— (April 19th) Stop and Wait

5 Handin

5.1 Code Requirements and Restrictions

We will run your program on x86 computers running Linux. We recommend that you use similar machines
for development. Such machines are available in the Wean clusters. Additionally, several Linux servers
(unix44.andrew.cmu.edu through unix49.andrew.cmu.edu) are available for remote login. If you have your
own Linux system, you are welcome to use it for this project. Note, however, that we will test your code on
the Andrew systems. Thugou must make sure your code runs correctly on the Andrew Linux machines

You must write your code in C. In addition, your code must compile @itb using theWall -Werror
flag cleanly on an Andrew Linux machine without any warning message.

5

5.2 Project Writeup

Each group should create a brief report (README file) describing their efforts, in one of the following
formats: plain text, postscript, or pdf. Your report should include the following:

e A description of the design of your sliding-window transport protocol. Note that if there are errors in
your implementation of some functionality, we may still be able to give you credit for having worked
through the design issues for that functionality.

¢ A description of what works and what does not (use a table for this). For things that do not work, give
your thoughts on what the problem might be.

e A breakdown of what each group member did (use a table for this as well).
e Your thoughts on the project: was anything too difficult? What would improve the project? Were

there parts of the project that worked particularly well, and shouldn’t be changed?

Also, each group should create a file called TESTS with a description of the test cases you used, and any
interesting testing strategies that you used.

5.3 Hand-in Procedure

You should submit the following files:

o Makefile, *.c, *.h
e Project writeupREADMEBNATESTS
¢ (optional) Code or documentatioBEXTRA on any extra credit items you have worked on (see Section
9).
All your submission files are to be placedais/cs/academic/class/15441-s06-users/group-<groupid>/p3

These folders will be locked after submission deadline. Notestlfamissions by e-mail will not be accepted

Similar to Project 2, youMakefile should be written such that we can build your binary from source
by simply runningmake (with no arguments) in your submission directory. The binary produced must be
calledkernel . If your code does not build according to this procedure, your submisglbiose points.

You do not need to include any library files (such as the C library, or the simulator’s libraries) in your
submission directory.

6 Resources and Hints

e Start early! Not only for your sake but for the common good. Read the handout, think about the
issues, ask us questions. There is an inherent tension between giving you freedom of design and

6

having to evaluate your submissions. Where ambiguities arise as to what we require, they are best
resolved as early on as possible. If you find yourself plagued by doubts and frustrations in week 3 of
a 4-week project, the fault lies partly with you.

e RFC 793 http://www.ietf.org/rfc/rfc0793.txt) specifies the functions of TCP proto-
col as your reference of a sliding-window transport layer. Note while reading the TCP literature, you
will come across many features not required by this project. So we suggest you be selective in reading
the RFC.Please start reading the RFC immediately, as it will take some time and you need to read
some parts several times.

e There are several things to note about the interface between transport layer and socket layer:

— Aserver must caBind() to bind to a port number before callidgcept() . If not, Accept()
should return a failure. Bind() to a client socket is optional, and thus you must support both
implicit binding (Socket — Connect — ...) and explicit binding $ocket — Bind —
Connect — ...) on a client socket.

— Accept() returnsO (instead of a new file descriptor as in UNIX) upon success,-dndpon
failure. Thus,Accept() does not create a new file descriptor (unlike the Berkeley Socket
specification), and uses the same file descriptor for the subsequent socket calls.

— SinceAccept() does not return a new socket descriptor, akecpet() returns and the
incomming connection is handled, the socket will be destroyed @Hose() . The server
needs to recreate the socket and bind it withSbeket() /Bind() sequence before listening
for new connection by callingccept() again.

— The socket starts accepting client connection requestsadtdythe Accept() call has been
successfully made, i.e., SYN packets arriving beforeAbeept() call should be discarded.

— Write() should return almost immediately, except in the case wheradhd buffeiis full.
This means that if your transport layer cannot deliver the data right away, you should queue the
data in a send buffer for later transmission. However, if the send buffer iS\ulle() blocks
until enough space in the send buffer is freed to enqueue another packet.

7 Plan of Attack

The following is a suggested plan of attack intended to help you get started. While you may not choose to
do everything in this order, it may provide you with some guidance. There will berdlestoneand two
checkpointgluring the course of this project.

1. Verify your IP forwarding layer. Throughout the course of the project, we will release reference
kernels agaist which you can test your TCP implementation. But first, you need to make sure that
your IP layer works against ours. Initially, we will release a reference project 2 kernel that you can
use to test. Please verify your IP layer by running a network simulation involving both your kernel
and the reference kernel and make sure that they can communicate with each other and agree on all
the bits in the IP header.

2. Write thesocket call, which involves allocating and attaching a control block to the socket, and
deallocate itirclose . For now, your control block can have only two things in it, just the source and
destination addresses. Haved andconnect fill in these addresses. Since you do not yet have
port numbers, you can only support one socket per host. However, your protocol does have enough
information to send packets, so implement a dumb versionrité and see if you can correctly
send a packet to the destination host. Verify tioat receive gets the packet thatrite sends
out.

3. Implement a simple receive buffer. Note that the pbuf structure contains a nextpkt pointer that you
can use to link packets together; therefore, you shouldn't have to write any queue structures. Have
tcp _receive enqueue to it whileead dequeues from it. Also make sure that your receive buffer
is thread safe. In addition, implement the signalling mechanism necessapgatbrto block when
the receive buffer is empty, and wake up only when a packet has come in. Now figure out a way
for close to signal 'EOF’ to the other side. At this point, you should have enough functionalities
implemented to perform a simple file transfer.

4. Add port numbers to your protocol so you can have more than one socket per host. Update your
TCP-control block, as well dsind andconnect so they know about port numbers. Make sure that
bind assigns unique port numbers, and think about race conditions as discussed in lecture. Also, have
close recycle the port numbers. Now, every packet being sent sent needs to have its the port number
identified, so modifywrite so that it prepends a simple header identifying the port numbers. Modify
tcp _receive so the port numbers are interpreted and used to demultiplex between sockets. (You
will need a datastructure to map port numbers to sockets). Congratulations, you have implemented
a complete transport layer protocol (a.k.a. UDP). Now your protocol should be able to handle two
simultaneous transfer§ou should reach this milestone by April 3.

5. From now on, you will be implementing TCP-specific features for reliable transport. Please take some
time to read and re-read the textbook sections on TCP, the RFC, and this project handout. Also, it's
probably a good time to implement the TCP header and checksums.

6. Implement three-way handshake for establishing a connection reliably. To assist you, we will provide
a reference implementation for you to connect against, for use until your TCP implementation can
connect with itself:This is checkpoint 1, due April 6 - You will sign up for a time to come and show
us to get your points!

7. Implement connection teardown. You also need to properly report 'EOF’ to the user according to the
socket I/O semantics.

8. Implement reliable packet transfer using stop-and-wait. Now you should be able to transfer a file
reliably (even with link-level packet dropping turned orfjhis is checkpoint 2, due April 19. -
You will download a rogue kernel. A user program we provide will transmit a keaiidrew 1D 1
> < group #> < andrew ID 2>), to a TCP port on the rogue kernel, which will transmit back a
hash string. Then you will send staff-441 the key and hash so we can verify you have completed the
checkpoint.

9. Implement sliding window. Now you will need a send buffer as well as a receive buffer that contains
out-of-order packets. (This step will take the rest of the time)

To summarize, there will be one milestone and two checkpoints, and the key dates are as follows:

March 27 - Release

April 3 - Milestone:UDP-like transport
April 6 - Checkpoint 1

April 19 - Checkpoint 2

a M W nNoe

April 28 - DUE!!!

8 Getting Help

e Most questions will be of general interest and should be posted to the class bboard. Please make your
guestions clear and specific to increase the chance that we can solve your problem with one response.
You are responsible for reading the bboards to stay up-to-date. We will assume that all students in the
class will read and be aware of any and all information posted to the bboards.

¢ If you have a question for the TAs — a question that is not appropriate for the bboard — please email
your question tetaff-441@cs.cmu.edis always, the course staff is available for help during office
hours.

e Talk to your classmates. While you need to write your own original program, we expect conversation
with other people facing the same challenges to be very useful.

e Come to office hours. This is particularly useful if you have questions about how to structure your
code, or questions about other aspects of your design.

9 Extra Credit

Our intent in suggesting extra credit items is to give interested students the opportunity to explore additional
topics in depth that will not be covered in project requirement. The primary reward for working on the
suggested items is the additional experience and knowledge that they giveoyextra credit points. Extra

credit will be granted at the discretion of the teaching staff.

If you work on the suggested topics below, please include in your project submission a fileECATER
describing what you have done.

Transport layer congestion control There are many features related to TCP congestion control that can
be implemented based on a sliding-window transport layer. These inslodestart, congestion
avoidance, fast retransimission, and fast recovdmplement these options in your sliding-window
transport layer, and compare the protocol performance with the one without these features.

Two way connect TCP allows the two parties to both connect at the same time.

Test casesWe encourage you to come up with interesting test strategies for checking your work.

Your Own Idea We welcome your suggestions for other interesting extensions to the project.

10

