
Simulation Environment Overview

15-441 Spring 2006

0 Changes

� Section 6 on interacting with the socket layer from the transport layer.

� Section 9.1 on kernel timers.

� Section 10 on using synchronization primitives.

1 Overview

In this document, we describe the simulation environment which you will be using for the projects
in this class. The simulator implements the basic components of an operating system kernel, as well
as the socket, transport, link and physical layers. You will be responsible for adding network and
transport code to the kernel. The details of your project assignments can be found in the respective
project handouts.

Communication API

Transport Layer

Network Layer

Link Layer

Physical Layer

Application

Kernel
Communication API

Transport Layer

Network Layer

Link Layer

Physical Layer

Application

Kernel

Node 1

Node 2 Node 3

Kernel

Physical Layer

Link Layer

Network Layer

Figure 1: Logical view of Simulator: Applications run on simulated nodes.

Figure 1 shows a logical picture of a sample simulated network, whereas Figure 2 shows the
real picture. In the logical view of the simulator, each node has its own operating system kernel,

1

Operating System

Node 1

Node 2

Node 3

App 1

App 2

Figure 2: Real view of Simulator: Each node is implemented as a separate UNIX process. Each
application running on a node is in a separate process.

and the applications on the node run on this kernel. In reality, however, each node in the network
is a separate UNIX process running on the real OS kernel. An application running on top of a node
is a UNIX process separate from the kernel process. The fact that each node is implemented as a
separate process enables you to simulate communications between nodes even though all the nodes
are actually running on the same machine. Applications are implemented as separate processes so
that they can be started after the simulation is already running (i.e., the kernel on each node is
running) and so that more than one application can be run on the same node.

In the real world, user applications invoke kernel services via special a special ’trap’ instruction
which suspends execution of the user program and switches to executing the kernel. The kernel
can read and write the user’s memory to fetch system call parameters and store the results of the
system call. In the simulator, user applications and the kernel on the nodes communicate using
Inter-Process Communication (IPC) primitives. For each user process that belongs to a kernel, the
kernel creates a thread to handle system call requests from the user process.

Each node has its own operating system kernel. Some nodes utilize all the layers of the network
stack implemented in your kernel, and there are applications running on top of them (Nodes 2 and
3 in the figure). These nodes represent end-systems or communication endpoints. Other nodes
(e.g., Node 1), use only the physical, link and network layers of the network stack. These nodes are
routers. They are responsible only for forwarding packets, and since forwarding is a function pro-
vided by the network layer, they do not need to use the layers above the network layer. Endpoints
on the other hand, do need to use all layers of the network stack since packets that are sent and
received by the application layer need to undergo processing by all layers below the application
layer.

In this handout, we will use $PDIR to denote the project directory. The project directory will
be: /afs/cs.cmu.edu/academic/class/15441-s06/project<x>/.

2 Building the Kernel and Running a Network Simulation

The support code for your projects provides an environment that emulates a simple machine with
hardware-level network devices and a system call interface. The support code also includes a
socket layer and possibly a simple transport layer implementation. The support code is provided
to you as a set of libraries: libkernel.a, and libuser.a. libkernel.a is to be linked with
your network layer code to build a kernel. libuser.a is to be linked with the applications that
run on your kernel.

When your simulated kernel boots, the support code will initialize its data structures, such as
those representing the “hardware”, and then call the kernel init() routine. The kernel init()

2

R3R2

R1
1

1

2

1

Figure 3: A sample network configuration.

routine provided in the templates includes code for initializing the transport layer. In this function,
you will add any initialization code that is necessary for your portion of the kernel. This would
include things like telling the support code which function it should call when it receives a packet,
and telling the support code which functions it should call when the user program wants to send
data over the network. (We discuss both in more detail later.)

You will be using the simulator to simulate a network. Typically, a network consists of more
than one node (otherwise it is not very interesting). A sample network configuration is shown in
Figure 3.

A script $PDIR/template/startkernel.pl will be provided to help you bring your net-
work up when you start the simulation. This script reads a network configuration file (see Sec-
tion 2.1) that you specify, and launches the appropriate number of kernels. Each kernel is started
in its own xterm window. An optional second argument (debug) may be specified to startker-
nel.pl so that it runs each kernel within gdb. If you don’t specify this option, problems may be
difficult to debug since when a kernel crashes, the xterm window corresponding to that kernel will
close.

2.1 Network Configuration File

As mentioned above, you need to create a network configuration file to run a simulation. This con-
figuration file specifies each node in the network along with all of its interfaces and their respective
addresses, as well as all the links that exist between each node and other nodes in the network.

We use the network from Figure 3 to illustrate how network configuration files are built. Inter-
face 1 on node R1 is connected to interface 1 on node R2, and interface 2 on node R1 is connected
to interface 1 on node R3.

The network configuration file for this network is the following:

Configuration for Router 1
Router 1 {

1 1.1.1.1 255.255.255.0
2 1.1.2.1 255.255.255.0
1:1 2:1
1:2 3:1

}

Configuration for Router 2
Router 2 {

1 1.1.1.2 255.255.255.0
2:1 1:1

}

Configuration for Router 3
Router 3 {

1 1.1.2.2 255.255.255.0
3:1 1:2

3

}

As usual, lines that start with a “#” are comments and will be ignored by the simulator. The
configuration file is comprised of a number of clauses, one for each node in the network (i.e. Router
1, Router 2, ...). The clause for a node begin with a description of the interfaces on that node. For
each interface, we specify the interface number (which must be greater than zero, and less than 17),
the IP address, and the netmask.

After we have described the interfaces for a node, we describe how these interfaces are con-
nected to other nodes. The notation X:Y refers to interface Y on node X. Thus, the line “1:1 2:1”
in the configuration entry for node R1, shown above, specifies that interface 1 on R1 should be
connected to interface 1 on R2. For this course, all links will be point-to-point. Hence you should
make sure not to connect a single interface to multiple remote interfaces.

Note that in this configuration, R2 and R3 are actually end points, not routers. However, the
simulator requires the word “Router” for each node in the configuration file.

This sample configuration file is provided in $PDIR/template/network.cfg. You can mod-
ify the sample or create your own configuration for testing purposes.

3 Building and Running User Programs

User programs run on the simulated nodes. Each user program is run as a separate user process
as shown in Figure 1. All user programs used with the simulator must be linked against the user
library we provide (see the template Makefile in $PDIR/utils for more details). In most re-
spects, the user programs that run with the simulator are just like user programs that run with the
OS’s network stack. There are, however, three important differences:

1. The entry point for the user programs must be named Main() instead of main(). Our sup-
port code defines main(). After the support code has completed its initialization, it will
invoke your Main() function. The interface for Main() function is exactly the same as
main(). That is, the usual argc and argv are still there.

2. User programs must be run with “-n i” as the first argument. This argument is to specify
that this user program should be run on node i. Note that the Main() function will not see
this argument (i.e. the simulator will strip this argument before calling Main()).

3. Calls to the socket API must use capitalized names rather than standard names. For exam-
ple, when your user program wants to create a socket, it must call Socket() rather than
socket().

4. The user program must be single-threaded. The kernel’s system call handling model does
not support multi-threaded user programs. Furthermore, it is unsafe to make system calls in
signal handlers, and we generally suggest your application programs avoid the use of signals.

4 Interacting with the Link Layer

In your projects you will be adding a network layer to the simulator. The network layer transmits
and receives packets from the network with the help of the link layer. In this section, we describe
the interface between the link layer and the network layer.

4.1 Initialization

Before your network layer can receive any packets from the link layer, you must tell the link layer
which function it should call when packets arrive. To do so, use hw interfaces register().
The prototype for this function is given in $PDIR/include/hw interfaces.h.

4

4.2 The network interface list

As explained earlier, the kernel boot code reads the network configuration file (Section 2.1) and cre-
ates a list of networking interfaces on the node. In this subsection, we describe this data structure,
in case your network layer needs to access it.

Each element on this list is a struct ifnet defined in $PDIR/include/if.h:

struct ifnet {
TAILQ_ENTRY(ifnet) if_next;

int if_index; /* interface number */
struct sockaddr_in if_addr; /* address of interface */
struct sockaddr_in if_netmask; /* netmask of if_addr */
int if_mtu; /* MTU of interface */

void (*if_start)(struct ifnet *ifp, struct pbuf *p);

mutex_t if_mutex; /* Lock for accessing outgoing
* interface on this device */

struct hwif *if_hwif; /* hardware device */
};

The head of this list can be accessed by calling the function ifnet listhead() provided by
the simulator. The TAILQ ENTRY() macro is a macro defined in $PDIR/include/queue.h that
is useful for creating linked lists. Iterating over the interface list can be done as follows:

struct ifnet *ifp = ifnet_listhead();

for(; ifp; ifp = TAILQ_NEXT(ifp, if_next)) {
printf(‘‘interface index: %d\n’’, ifp->if_index);

}

4.3 Handing packets to the network interface for transmission

Once your forwarding layer has completely built a packet and has determined which interface the
packet should be sent out on, the forwarding layer can send this packet by calling the if start()
routine of the appropriate interface. (The prototype for if start() is given in $PDIR/include/if.h).
But before you can do that, you need to make sure that you have exclusive access of the interface
by acquiring the lock on it. (A hardware device may only send 1 packet at a time.) For example, if
your forwarding layer has consulted the forwarding table, and determined that the current packet
should be forwarded through interface 1, you would do the following:

struct ifnet *ifp;
struct pbuf *pkt; /* packet to be sent */

/* ifp = code to find interface 1 here */

MUTEX_LOCK(&ifp->if_mutex); /* lock the interface */
ifp->if_start(ifp, pkt); /* send the packet */
MUTEX_UNLOCK(&ifp->if_mutex); /* unlock the interface */

Note that the link layer will free the buffer after it has finished transmission of the packet,
whether transmission succeeds or not. For this reason, you must not free the buffer yourself after
passing it to the link layer.

4.4 Getting packets received by the network interface

Assuming you have initialized the link layer properly, the link layer will call one of your functions
(call it the “input handler”) whenever a network interface receives a packet from the network. As
indicated by the prototype of the initialization function (hw interfaces register()), the link
layer will call your input handler with two arguments: a struct ifnet indicating on which

5

interface the packet was received, and a struct pbuf * pointing to the packet. Note that your
code is responsible for freeing the buffer, in case of any errors. You may assume that once a packet
leaves the IP layer for the transport layer, the transport layer will be responsible for freeing it.

4.5 The pbuf structure

A packet sent or received by an application is processed by several different layers in the network
stack. In real BSD-style implementations, an mbuf structure is used for passing the packet between
the different layers. You will be using a pbuf structure for building and passing packets between
network stack layers. The pbuf structure is simplified version of the BSD mbuf.

The definition of the pbuf structure is the following (given in $PDIR/include/pbuf.h):

struct p_hdr {
struct pbuf *ph_next; /* next buffer in chain */
struct pbuf *ph_nextpkt; /* next chain in queue/record */
caddr_t ph_data; /* location of data */
int ph_len; /* amount of data in this mbuf */
int ph_type; /* type of data in this mbuf */
int ph_flags; /* flags; see below */

};

struct pbuf {
struct p_hdr p_hdr;
char p_databuf[PHLEN];

};
#define p_next p_hdr.ph_next
#define p_nextpkt p_hdr.ph_nextpkt
#define p_data p_hdr.ph_data
#define p_len p_hdr.ph_len
#define p_type p_hdr.ph_type
#define p_flags p_hdr.ph_flags
#define p_dat p_databuf

The pbuf’s must be allocated and deallocated using the routines p get() and p free() de-
clared in $PDIR/include/pbuf.h. Since a pbuf contains less than 512 bytes of data (PHLEN is
defined as 512 minus header length), an MTU-sized packet (1500 bytes in your projects) will con-
sist of 4 pbuf structures linked together by the p next field in each pbuf – this is called a pbuf
chain. The p nextpkt field can be used to link multiple packets together on a queue. By con-
vention, only the first pbuf in a pbuf chain should be used to link to another pbuf chain (through
p nextpkt).

The field p data points to the location where the packet data starts within the p databuf
buffer. Why implement pbufs this way? Suppose your transport layer has built a UDP packet
with 20 bytes of data and an 8-byte UDP header. Before this packet gets sent on the wire, it will
have to go through network and link layer processing. If you place the data at the beginning of the
pbuf, the network layer will have to allocate a new pbuf in which to store the 20-byte IP header
and prepend this pbuf to the packet. However, if you were clever enough to leave 20 bytes of
space at the beginning of the p databuf buffer, you could simply subtract 20 from the value of
p data and then copy the 20-byte IP header to the address indicated by this pointer. An example
of a packet consisting of multiple pbuf structures is shown in Figure 4.

The field p len is the length of data contained in the pbuf; it is not the total length of the packet.
p type is managed by the pbuf allocation code and p flags is presently not used at all by the
kernel.

The prototype for struct pbuf and other utility functions are given in $PDIR/include/pbuf.h.
Some of the routines which you might find useful arep get(), p free(), p pktlen(), p freep(),
p copyp(), p strip(), p prepend(), etc.

6

Figure 4: pbuf: A 48-byte IP packet spreads out over 2 pbuf structures. There is a 20-byte IP header,
an 8-byte UDP header, and 20-bytes of user data. The IP header starts at the beginning of the first
pbuf’s p databuf, while the UDP header and data bytes start in the middle of the second pbuf’s
p databuf. Placing data in the middle of p databuf and modifying p data to point to it is a clever
way to leave space for headers, or to push and pop headers, without requiring additional pbufs.

5 Interacting with the Transport Layer

The transport layer sits between the socket layer and the network layer. The support code provides
a simple implementation of UDP. In project 3, you will implement your own TCP layer. In this
section, we describe the interface between the transport layer and the network layer.

5.1 Handing packets to the transport layer

Once your forwarding layer has decided that the packet is destined to this host, it should strip off
the IP header and send the rest of the packet to the appropriate transport layer. For TCP packets,
the protocol filed in the IP header is set to IPPROTO TCP, and for UDP packets, the field is set to
IPPROTO UDP.

The only transport layer implemented by the simulator internally is UDP. A UDP packet should
be passed to the UDP layer by calling the udp receive() routine. The prototype for udp receive()
is given in $PDIR/include/udp.h.

In Project 3, when you have implemented TCP, forward packets to the TCP layer by calling your
own tcp receive() function.

Note: the transport layer will be responsible for disposing of the pbuf chain with p freep().

5.2 Getting packets from the transport layer

When a user program wants to transmit data, the transport layer will receive the data through the
socket layer. The transport layer will then pass the packet to the forwarding layer by calling the
ip output() routine. The prototype for ip output() is given in
$PDIR/template/kernel/ipforward.h.

You must implement the ip output() routine. Your ip output() routine should prepend
an IP header with the fields set appropriately, and then send the packet on the appropriate interface

7

after looking up the forwarding table.
Note that if the IP NOROUTE bit is set in the flags parameter, the behavior of ip output()

changes significantly. Instead of looking up the forwarding table to find out which interface to send
the packet on, it looks up the network interface list described in section 4.2. It uses the source IP
address and the netmask of each interface along with the destination IP address to choose which
interface to send the packet on. As explained in the project handout, your routing daemon will use
this option.

6 Interacting with the Kernel Socket Layer

The socket layer sits between the transport layer and handles socket system calls from the user.
In this section, we will describe the interface between the transport layer and the socket layer
inside the simulator. The internal interface to the socket layer is described in the header file
$PDIR/include/ksocket.h.

6.1 Registering with the socket layer

In order for the socket to know about your transport layer protocol, you must register your trans-
port layer protocol with the socket layer by calling the function sock register transport,
passing it pointer transport proto structure, which must remain in memory for the lifetime
of the kernel’s execution. The transport proto is defined as follows:

struct transport_proto {
int domain;
int type;

int (*socket) (struct socket *s);
int (*close) (struct socket *s);

int (*bind) (struct socket *s, struct sockaddr_in *addr);
int (*connect) (struct socket *s, struct sockaddr_in *addr);
int (*accept) (struct socket *s, struct sockaddr_in *addr);

int (*write) (struct socket *s, const char *buf, int len);
int (*sendto) (struct socket *s, const char *buf, int len,

int flags, const struct sockaddr_in *to);

int (*read) (struct socket *s, char *buf, int len);
int (*recvfrom) (struct socket *s, char *buf, int len,

int flags, struct sockaddr_in *from);

int (*setsockopt) (struct socket *s, int level, int option,
const char *optval, int optlen);

};

The domain and type fields serve as an identification for the socket layer to identify the proto-
col. They matched against the same domain and type parameters the user passes into the Socket()
system call.

Thre rest of the structure is a list of entry points to the handler functions in the transport layer.
The prototype for each of the handlers corresponds exactly to their respective socket system calls,
except the specifications have been simplified to handle handle only Internet protocols.

The entry points return a positive integer to indicate success. To indicate failure, a negated
errno value is returned. This will cause the systerm call to return -1 to the user program and to

8

set errno appropriately. For example if proto->write() returnes -ENOMEM, then the Write()
system call will return -1 and errno will be set to ENOMEM.

If your transport layer doesn’t support certain socket operations, please set the entry points
to NULL. The socket layer will return errno ENOTSUP to system calls which encounter a NULL
entry point.

6.2 Managing sockets in the transport layer

The socket layer keeps the protocol-independent state of the socket stored in a struct socket
structure. In addition, to manage the protocol-specific states of the socket, you must create your
own socket control structure and link it with the socket structure.

The socket structure is defined in $PDIR/include/ksocket.h as follows:

struct socket {
TAILQ_ENTRY(socket) so_link; /* List of all sockets */

int sd; /* Socket descriptor */
void *pcb; /* Protocol-specific control block */

struct transport_proto *transport; /* The transport layer */
};

When user code invokes the Socket() system call, the socket layer will create a new socket
structure, fill in the sd (socket descriptor) and transport fields, and call the appropriate transport
protocol’s socket() entry point. This is a good time for the transport layer to create the protocol-
specific control block and and link it with the socket struct by setting the pcb field to point to
the control block. The transport layer should not modify any of the other fields in the socket
structure.

When a Close() system call is invoked, the socket layer will first call the transport layer’s
close() entry point. Some transport layers, such as TCP, cannot always immediately complete a
close operation. In general, a close may need to block some time before returning. Furthermore, the
transport layer may need to operate on the socket even after Close() has completed. Therefore, it
has the responsibility of calling sock close() when it is eventually done with the socket, so the
socket layer can free up the resources allocated for that socket.

6.3 Getting data from the socket layer

When the socket layer gets a Sendto() or Write() system call, the sendto or write entry point
is invoked. Note that the data passed in from the socket layer specified as a base address and
length, not a pbuf chain, and is valid only for the duration of the sendto() or write() function
call. The transport layer is responsible for converting these to pbuf packets before passing them
down to the lower layers. Since the IP layer does not support fragmentation, the transport layer is
thus responsible for allocating reasonably-sized packet buffers to hold these bytes. When creating
packet-buffers, you may use the system-wide MTU value defined in $PDIR/include/if.h, and
do remember to reserve enough bytes in the beginning of these packets for the transport layer
headers as well as IP headers. You may find the function buf to pbufchain() useful for doing
this conversion.

If a sendto or write operation cannot be performed right away, you must block the caller
until the bytes can be sent.

6.4 Passing data to the socket layer

When the socket layer gets a Recvfrom() or Read() system call, the recvfrom or read entry
point is invoked. If data bytes are available, they should be copied into the indicated buffer, and the
number of bytes copied should be returned to the caller. You may find the pbufchain to buf()

9

function helpful for performing this operation. If no data bytes are available, and the flags passed
into recvfrom has the MSG NOBLOCK bit set, this is a non-blocking read and recvfrom should
return with -EAGAIN. Otherwise the function will need to put the invoking thread to sleep on a
condition variable, which will be signalled when the socket receives some data from the network
layer; see 10.2.

7 Application-Level Socket System Calls

The socket layer provides an API (application program interface) for user programs to access the
networking functionality of the kernel. For user programs to interface to the simulator, you can use
the socket API. The prototypes are defined in $PDIR/include/Socket.h (this header file should
be included by user programs, not your kernel).

Observe that the first letter of each call is capitalized. This is to distinguish them from the actual
Linux system calls, which will go into the Linux kernel upon invocation. All your user programs
will be linked against a library provided by us so that when they invoke these capitalized calls, the
corresponding handlers in our simulated kernel (and not the Linux kernel) are invoked.

The simulator Socket API supports Socket(), Close(), Bind(), Connect, Accept(), Read(), and
Write() functions for TCP. Similarly, it supports Socket(), Close(), Sendto(), Recvfrom() and Set-
sockopt() functions for UDP. Note: Unlike an operating system kernel, the simulator has no way
of cleaning up after a user process once it exits. Please make sure to always Close() your socket
descriptors before exiting to recycle simulator kernel resources.

7.1 The Socket() call

The Socket() call accepts three arguments: family, type, and protocol. It supports the following
three combinations of family and type: (1) AF INET/SOCK STREAM: this combination specifies that
the user wants to create a TCP socket, (2) AF INET/SOCK DGRAM: this combination specifies that
the user wants to create a UDP socket, and (3) AF ROUTE/SOCK RAW: this combination specifies
that the user wants to create a routing socket.

7.2 The Accept() call

Our Accept() differs from the standard accept in one significant way. Accept() returns 0 (in-
stead of a new file descriptor as in UNIX) upon success, and -1 upon failure. Thus, Accept() does
not create a new file descriptor (unlike the Berkeley Socket specification), and uses the same file
descriptor for the subsequent socket calls.

Given the semantics of our Accept() call, and the lack of a Select() call, it is infeasible for a
single application process running on our simulator to service multiple connections in a reasonable
way. Thus you should not attempt to do this.

7.3 The Recvfrom() call

By default, Recvfrom() is blocking: when a process issues a Recvfrom() that cannot be com-
pleted immediately (because there is no packet), the process is put to sleep waiting for a packet to
arrive at the socket. Therefore, a call to Recvfrom() will return immediately only if a packet is
available on the socket. When the MSG NOBLOCK bit is set in the flags argument of Recvfrom(),
Recvfrom() does not block if there is no data to be read, but returns immediately with a return
value of -1, and setting errno to EAGAIN. MSG NOBLOCK is defined in $PDIR/include/systm.h.

You can find some user level programs written using the Socket API in $PDIR/utils.

10

8 Routing Sockets

In order to forward packets, your forwarding layer will need to know which packets will be sent
through which links. The simulator provides a way for user space programs to provide the for-
warding information to the kernel. As you are responsible for implementing the kernel forwarding
code, this section describes the interface that user programs will use to provide the kernel with
forwarding information.

These programs communicate with your kernel via a “routing socket”. The user programs will
call Socket(AF ROUTE, SOCK RAW, 0) to obtain the routing socket. They will then add entries
to the forwarding table by writing messages to the routing socket.

The format of the messages written by the user programs is defined in $PDIR/include/route.h,
and given below. The user programs willwrite a message of type struct rt msghdr to the rout-
ing socket.

struct rt_info {
struct sockaddr_in rti_dst; /* destination, only sin_addr.s_addr

field is used in project */
u_int32_t rti_index; /* interface index */

};

struct rt_msghdr {
u_int16_t rtm_msglen;
u_int16_t rtm_type; /* Message Types */
u_int32_t rtm_errno; /* set by the kernel, if error */
struct rt_info rtm_rti; /* routing info */

};

/* Message Types */
#define RTM_ADD 0x001 /* Add Route */
#define RTM_DELETE 0x002 /* Delete Route */
#define RTM_CHANGE 0x003 /* Change Metrics or flags */

The following values of the rtm type field of the rt msghdr structure are supported: (1)
RTM ADD: add an entry to the routing table, (2)RTM DELETE: delete an entry from the routing table,
and (3)RTM CHANGE: change an entry in the routing table.

You can find an example user space program ($PDIR/utils/fdconfig.c) which uses rout-
ing sockets to provide forwarding information to the kernel.

9 Kernel utility functions

Here we describe some utility functions provided by our simulated kernel.

9.1 Timers

In implementing the project, you may need to use timers. For this reason, our support code pro-
vides a timer facility, as defined in $PDIR/include/systm.h:

typedef void (*timeout_t)(void *);

void timeout(timeout_t ftn, void *arg, int ticks);

int untimeout(timeout_t ftn, void *arg);

1. The timeout() function allows you to schedule a routine to be executed a certain number
of ticks into the future. A tick in our support code is 500 ms. The first argument (ftn) is the
function to be called, arg is a pointer to the argument (if any) that the function will use, and

11

ticks is the number of 500 ms intervals from the present time that will expire before this
function is invoked.

2. The untimeout() routine allows you to cancel an event that has been scheduled with time-
out(). The pointer values of the ftn and arg parameters that are passed to untimeout()
must exactly match those were passed to timeout() previously. The function returns 1 if a
timer was cancelled, and 0 otherwise (if the specified timer callback event does not exist or has
already fired). Note: untimeout() is thread-safe in the sense that when untimeout(f,a)
returns it guarantees that the call to f(a) either has already happened or has been cancelled
and will not happen. This also means that an invocation of a callback function must not call
untimeout() in a way which would cancel itself, since untimeout() wouldn’t be allowed to
return until after it returned, which is a special case of deadlock.

9.2 How to panic

The simulated kernel provides the function panic(char * fmt, ...), which causes the kernel
to immediately stop running and print out the message passed to it as an argument.

10 Using Synchronization Primitives

We have provided macro wrappers around pthread’s mutex and condition variables functions in
sync.h. When using these synchronization primitives in your project, please use what we pro-
vided in sync.h and not invoke the pthread’s functions directly.

The following is only a specification of mutexes and condition variables functionalities provided in sim-
ulator environment. Please refer to the lecture materials or project handouts for a conceptual overview of
synchronization.

10.1 Mutexes

Mutual exclusion locks prevent multiple threads from simultaneously executing critical sections of
code. For more information on the behavior of mutexes, feel free to refer to the Solaris or Linux
pthread mutex init() manual page.

10.1.1 Interface

In the simulator, mutexes have the type mutex t. A mutexes can be initialized statically as follows:

mutex_t m = MUTEX_INITIALIZER;

or using the mutex init() function (see below).

The following wrappers are provided for operations on mutexes:

� int mutex init(mutex t *mp)

� void MUTEX DESTROY(mutex t *mp)

� void MUTEX LOCK(mutex t *mp)

� void MUTEX UNLOCK(mutex t *mp)

NOTE: The capitalized wrappers above are wrappers which will cause the kernel to panic on
error conditions. When using mutexes, error conditions only occur as results of errors in the calling
code. The lowercase wrappers returns zero on succcess and non-zero on failure. This convention
applies to condition variables as well.

12

10.1.2 Debugging

The mutex functions perform additional error checking and reports them if you enable errorcheck-
ing by compiling your code with flags -DMUTEX ERRORCHECK and -D GNU SOURCE. The addi-
tional error-checking features include: detect deadlock situations when a thread locks a mutex that
it already holds, check that the mutex is locked when unlocking, and check that the mutex is being
unlocked by the owner of the mutex. (Note: the error checking functionalities are provided by
error-checking mutexes, which are Linux’s extensions to the POSIX standards. Therefore, error-
checking mutexes are not portable and only avaliable on Linux.)

If you complie your code with -DSYNC TRACE, the mutex wrappers provide a trace of lock-
ing and unlocking information showing the name of the mutexes and the functions trying to
lock/unlock them.

10.2 Condition Variables

Condition variables are used for waiting, for a while, for mutex-protected state to be modified by
some other thread. A condition variable allows a thread to voluntarily relinquish the CPU so that
other threads may make changes to the shared state, and then tell the waiting thread that they have
done so. If there is some shared resource, threads may de-schedule themselves and be awakened
by whichever thread was using that resource when that thread is finished with it.

For more information on the behaviour of condition variables, please refer to the Solaris or
Linux documentation on pthread cond wait().

10.2.1 Interface

In the simulator, condition variables have the type cond t. A condition variable can be initialized
statically as follows:

cond_t cv = COND_INITIALIZER;

or using the cond init() function (see below).

The following wrappers are provided for operations on condition variables:

� int cond init(cond t *cv)

� void COND DESTROY(cond t *cv)

� void COND WAIT(cond t *cv, mutex t *mp)

� void COND SIGNAL(cond t *cv)

10.2.2 Debugging

If you complie your code with -DSYNC TRACE, the condition variable wrappers provide a trace of
waiting and signalling showing the names of the conditions (and mutexes on those conditions) and
the functions trying to wait on/signal them.

13

