15-451 Algorithms, Fall 2007

Homework # 5 due: Tuesday November 6, 2007

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each sheet. You will be handing each problem into a separate box,
and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. Group work is only for the
oral-presentation assignments.

Problems:

(30 pts) 1.

(25 pts) 2.

[Fair carpooling] The n employees of the Turing Machine Repair Company sometimes
carpool to work together. Say there are m days, and S; is the set of people that carpool
together on day i. For each set, one of the people in the set must be chosen to be the
driver that day. Driving is not desirable, so the people want the work of driving to be
divided as fairly as possible. Your task in this problem is to give an algorithm to do
this efficiently.

The fairness criterion is the following: A person p is in some of the sets. Say the
sizes of the sets that p is in are ai,as,...,a;. Person p should really have to drive
S 4+ = 44 —k times, because this is the amount of resource that this person
effectlvely uses. Of course this number may not be an integer, so let’s round it up to
an integer. The fairness criterion is simply that she should drive no more than this
many times.

For example, say that on day 1, Alice and Bob carpool together, and on day 2, Alice,
Carl, and Dilbert carpool together. Alice’s fair cost would be [1/2+41/3] = 1. So
Alice driving both days would not be fair. Any solution except that one is fair.

(a) Prove that there always exists a fair solution.

(b) Give a polynomial-time algorithm for computing a fair solution. Note: we are
assuming the sets S; are all known up front, and everybody abides by the solution
computed by the algorithm (so this does not have any of the issues raised in the
cake-cutting lecture).

Hint: Try to model the problem using network flow in such a way that part (a) falls
out directly from the integrality theorem for network flow, and part (b) just follows
from the fact that we can solve max flow in polynomial time. So, it all boils down to
coming up with the right flow graph to model the problem.

[Graph Searching] Let G be a directed graph represented using an adjacency list. So,
each node G[i] has a list of all nodes reachable in 1 step from i (all out-neighbors of 7).

Suppose each node of G also has a value: e.g., node 1 might have value $100, node 2
might have value $50, etc.

(20 pts) 3.

(25 pts) 4.

Give a fast algorithm that computes, for every node, the highest value that can be
reached from that node (i.e., that you can get to by some path from that node). For
instance, if G is strongly-connected, then for every node this will be the maximum value
in the entire graph. Your algorithm should run in time O(m + n) or O(m + nlogn).

[Graduation] Cranberry-Melon University has n courses. In order to graduate, a stu-
dent must satisfy several requirements. Each requirement is of the form “you must
take at least k courses from subset S”. The problem is to determine whether or not a
given student can graduate. The tricky part is that any given course cannot be used
towards satisfying multiple requirements. For example if one requirement states that
you must take at least two courses from {A, B,C}, and a second requirement states
that you must take at least two courses from {C, D, E'}, then a student who had taken
just {B,C, D} would not yet be able to graduate.

Your job is to give a polynomial-time algorithm for the following problem. Given a
list of requirements rq, 79, ..., r, (where each requirement r; is of the form: “you must
take at least k; courses from set S;”), and given a list L of courses taken by some
student, determine if that student can graduate. In particular, show how you can solve
this using network flow.

[Realizing degree sequences| You are the chief engineer for Graphs-R-Us, a company
that makes graphs to meet all sorts of specifications.

(a) A client comes in and says he needs a 4-node directed graph in which the nodes
have the following in-degrees and out-degrees:

dl,in - 07 dl,out =2
d2,in -]-> d2,out =2
d3,in = 17 d3,out =1
d4,in = 37 d4,out =0

Is there a directed graph, with no multi-edges or self loops, that meets this spec-
ification? If so, what is it?

(b) This type of specification, in which the in-degrees and out-degrees of each node are
given, is called a degree sequence. The question above is asking whether a given
degree sequence is realizable — that is, whether there exists a directed graph
having those degrees.

Find an efficient algorithm that, given a degree sequence, will determine whether
this sequence is realizable, and if so will produce a directed graph with those
degrees. The graph should not have any self-loops, and should not have any
multi-edges (i.e., for each directed pair (i, j) there can be at most one edge from i
to 7, though it is fine if there is also an edge from j to ¢). Hint: as if you couldn’t
have guessed - think network flow!

