
Lecture 5

Concrete models and tight bounds I

5.1 Overview

In this lecture and the next, we discuss the notion of lower bounds: proving that any algorithm for
some problem must take at least a certain amount of time to solve it. We will examine some simple
concrete models of computation, each with a precise definition of what counts as a step, and will
attempt to get tight upper and lower bounds for a number of problems. Unlike many of the other
lectures, we will try to avoid using O, Θ, and Ω, and instead will examine exact quantities as much
as possible.

In this lecture we focus on the comparison model. We will show that any deterministic comparison-
based sorting algorithm must use at least log2(n!) ∈ Ω(n log n) comparisons to sort an array of n
elements in the worst case. We also consider the problem of finding the largest and second-largest
element in an array, which has an interesting connection to tennis tournaments and Lewis Carroll.

5.2 The idea of lower bounds

So far we have been focusing on designing good algorithms for various problems like sorting and
median-finding. A natural question that arises this context is: are these algorithms best possible?
If not, how much better could one hope to get? Addressing these questions requires proving that
any algorithm must take at least a certain amount of time to solve the problem at hand. Statements
of this form are called lower bounds because they give a lower bound to the question: “how fast
an algorithm can one hope to get for the given problem?” In this context, an algorithm with a
performance guarantee would be considered an upper bound. Lower bounds help us understand how
close we are to the best possible solution to some problem: e.g., if we have an algorithm that runs
in time O(n log2 n) and a lower bound of Ω(n log n), then we have a log(n) “gap”: the maximum
possible savings we could hope to achieve by improving our algorithm.

Lower bounds are often difficult to show: you cannot necessarily assume, for instance, that the
sorting algorithm is going to choose a pivot as in Quicksort, or that it will split the array into
pieces as in Mergesort; you need to consider any possible algorithm. To make this task a bit
more tractable (as well as more precise) we will look at concrete computational models, where we
explicitly specify what operations are allowed, and how much they each cost. Typically, each model
will have some operations that cost 1 step (like performing a comparison, or swapping a pair of
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elements), some that are free, and some that are not allowed at all. Then, within these models, we
will see how close we can bring the upper and lower bounds together. In these next two lectures,
we will consider doing this for several models and problems.

5.2.1 Terminology and setup

We will be focusing in this lecture on deterministic algorithms only (in the next lecture we will
look at lower bounds for randomized algorithms). By a worst-case upper bound of f(n) for some
problem, we mean that there exists an algorithm that takes at most f(n) steps on any input of
size n. By a worst-case lower bound of g(n), we mean that for any algorithm there exists an input
on which it takes at least g(n) steps. As mentioned above, the reason for this terminology is that
if we think of our goal as being to understand the “true complexity” of each problem, measured in
terms of the best possible worst-case guarantee achievable by any algorithm, then an upper bound
of f(n) and lower bound of g(n) means that the true complexity is somewhere between g(n) and
f(n).

5.3 Sorting by comparisons

We begin by considering the class of comparison-based sorting algorithms. These are sorting algo-
rithms that only operate on the input array by comparing pairs of elements and moving elements
around based on the results of these comparisons. In particular, let us make the following defini-
tions.

Definition 5.1 In the comparison model, an input consists of an array [a1, a2, . . . , an] of n
items. Items can be examined only by comparing pairs of them. Each comparison (“is ai > aj?”)
returns YES or NO and counts a 1 time-step. All other computation, such as reordering items
based on comparisons made, or incrementing counters, is free.

Definition 5.2 A comparison-based sorting algorithm operates in the comparison model. It takes
as input an array [a1, a2, . . . , an] and must output a permutation of the input in which all items are
in sorted order.

For instance, Quicksort, Mergesort, and Insertion-sort are all comparison-based sorting algorithms.
What we will show is the following theorem.

Theorem 5.1 Any deterministic comparison-based sorting algorithm must perform lg(n!) ∈ Ω(n log n)
comparisons to sort n elements in the worst case.1 Specifically, for any deterministic comparison-
based sorting algorithm A, for all n ≥ 2 there exists an input I of size n such that A makes at least
lg(n!) comparisons to sort I.

(Note: we will examine the quantity lg(n!) more carefully after proving the theorem.)

To prove this theorem, we cannot assume the sorting algorithm is going to necessarily choose a
pivot as in Quicksort, or split the input as in Mergesort — we need to somehow analyze any possible

1We use “lg” to mean “log2”.
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(comparison-based) algorithm that might exist. The way we will do this is by showing that in order
to sort its input, the sorting algorithm is implicitly playing a game of “20 questions” with the input,
trying to figure out in what the order its elements are being given.

Proof: Since the algorithm must output a permutation of its input, we can assume the input
elements are {1, 2, . . . , n} but in some unknown order. The key to the argument is that (a) two
different input orders cannot both be correctly sorted by the same permutation, and (b) there are
n! different orders the input elements could be in. Now, suppose that two different initial orderings
of these numbers I1, I2, are consistent with all the comparisons the sorting algorithm has made so
far. Then, the sorting algorithm cannot yet be done since any permutation it outputs at this point
cannot be correct for both I1 and I2 (by observation (a) above). So, the sorting algorithm needs
at least implicitly to have pinned down which ordering of {1, . . . , n} was given in the input.

Let S be the set of input orderings consistent with all answers to comparisons made so far (so,
initially, S is the set of all n! possible orderings of the input). We can think of a new comparison
as splitting S into two groups: those input orderings for which the answer is YES and those for
which the answer is NO. Now, if the answer to each comparison is always the one corresponding to
the larger group, then each comparison cuts down the size of S by at most a factor of 2. Since S
initially has size n!, and at the end the algorithm must have reduced |S| down to 1, the algorithm
will need to make at least log2(n!) comparisons before it can halt.

Let’s do an example with n = 3. In this case, there are six possible input orderings:

{123}, {132}, {213}, {231}, {312}, {321}.
Suppose the sorting algorithm first compares A[0] with A[1]. If the answer is that A[1] > A[0] then
we have narrowed down the input to the three possibilities:

{123}, {132}, {231}.
Suppose the next comparison is between A[1] and A[2]. In this case, the most popular answer is
that A[1] > A[2], which removes just one ordering, leaving us with:

{132}, {231}.
It now takes one more comparison to finally isolate the input ordering.

Notice that our proof is like a game of 20-questions in which the responder doesn’t actually decide
what he is thinking of until there is only one option left. This is legitimate because we just need to
show that there is some input that would cause the algorithm to take a long time. In other words,
since the sorting algorithm is deterministic, we can take that final remaining option and then re-
run the algorithm on that specific input, and the algorithm will make the same exact sequence of
operations.

You can also perform the above proof by considering the possible outputs of the sorting algorithm.
From this perspective, the two key facts we need are: (a) there are n! possible outputs, and (b) for
any permutation, there exists an input for which it is the only correct answer. Now we can consider
the same 20-questions game where S is the set of outputs consistent with all comparisons made so
far. Again, each comparison breaks the set of possible outputs into two classes, and the response to
the question says which class the correct output is in. By always giving the answer corresponding
to the larger class, an adversary forces the algorithm to make at least lg(n!) comparisons.

Finally, let’s take a look at the quantity lg(n!). We can expand this as: lg(n) + lg(n− 1) + lg(n−
2) + . . . + 1. The first n/2 terms are each at least lg(n/2), so this quantity is Ω(n log n).
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Question: Suppose we consider the problem: “order the input array so that the smallest n/2
come before the largest n/2”? Does our lower bound still hold for that problem, or where does it
break down? How fast can you solve that problem?

Answer: No, the proof does not still hold. It breaks down because two different input orderings
can have the same correct answer. E.g., the identity permutation is a correct answer for both the
inputs [1 2 3 4] and [2 1 4 3]. In fact, not only does the lower bound break down, but we
can actually solve this problem in linear time: just run the linear-time median-finding algorithm
and then make a second pass putting elements into the first half or second half based on how they
compare to the median.

5.3.1 How tight are our upper and lower bounds?

Let’s consider how close our upper and lower bounds are for comparison-based sorting. First, to
get a better handle on what exactly lg(n!) looks like, since today’s theme is tight bounds, we can
use the fact that n! ∈ [(n/e)n, nn]. So this means that:

n lg n− n lg e < lg(n!) < n lg n
n lg n− 1.443n < lg(n!) < n lg n.

In particular, no algorithm can sort with fewer than n lg n− 1.433n comparisons.2

Let’s now consider our upper bounds. Assume n is a power of 2 for simplicity. Can you think of
an algorithm that makes at most n lg n comparisons, and so is tight in the leading term? In fact,
there are several algorithms, including:

Binary insertion sort: If we perform insertion-sort, using binary search to insert each new el-
ement, then the number of comparisons made is at most

∑n
k=2dlg ke ≤ n lg n. Note that

insertion-sort spends a lot in moving items in the array to make room for each new element,
and so is not especially efficient if we count movement cost as well, but it does well in terms
of comparisons.

Mergesort: Merging two lists of n/2 elements each requires at most n − 1 comparisons. So,
unrolling the recurrence we get (n − 1) + 2(n/2 − 1) + 4(n/4 − 1) + . . . + n/2(2 − 1) =
n lg n− (n− 1) < n lg n.

5.3.2 Finding the maximum of n elements

How many comparisons are necessary and sufficient to find the maximum of n elements, in the
comparison model of computation?

Claim 5.2 (Upper bound) n−1 comparisons are sufficient to find the maximum of n elements.

Proof: Just scan left to right, keeping track of the largest element so far. This makes at most
n− 1 comparisons.

2Since 1.433n is a low-order term, sometimes people will write this these bounds on lg(n!) as: lg(n!) = (n lg n)(1−
o(1)), meaning that the ratio between lg(n!) and n lg n goes to 1 as n goes to infinity.
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Now, let’s try for a lower bound. One simple lower bound is that since there are n possible answers
for the location of the minimum element, our previous argument gives a lower bound of lgn. But
clearly this is not at all tight. In fact, we can give a better lower bound of n− 1.

Claim 5.3 (Lower bound) n− 1 comparisons are needed in the worst-case to find the maximum
of n elements.

Proof: Suppose some algorithm A claims to find the maximum of n elements using less than n−1
comparisons. Consider an arbitrary input of n distinct elements, and construct a graph in which
we join two elements by an edge if they are compared by A. If fewer than n − 1 comparisons are
made, then this graph must have at least two components. Suppose now that algorithm A outputs
some element u as the maximum, where u is in some component C1. In that case, pick a different
component C2 and add a large positive number (e.g., the value of u) to every element in C2. This
process does not change the result of any comparison made by A, so on this new set of elements,
algorithm A would still output u. Yet this now ensures that u is not the maximum, so A must be
incorrect.

Since the upper and lower bounds are equal, these bounds are tight.

5.3.3 Finding the second-largest of n elements

How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the second
largest of n elements? Again, let us assume that all elements are distinct.

Claim 5.4 (Lower bound) n − 1 comparisons are needed in the worst-case to find the second-
largest of n elements.

Proof: The same argument used in the lower bound for finding the maximum still holds.

Let us now work on finding an upper bound. Here is a simple one to start with.

Claim 5.5 (Upper bound #1) 2n− 3 comparisons are sufficient to find the second-largest of n
elements.

Proof: Just find the largest using n− 1 comparisons, and then the largest of the remainder using
n− 2 comparisons, for a total of 2n− 3 comparisons.

We now have a gap: n−1 versus 2n−3. It is not a huge gap: both are Θ(n), but remember today’s
theme is tight bounds. So, which do you think is closer to the truth? It turns out, we can reduce
the upper bound quite a bit:

Claim 5.6 (Upper bound #2) n+ lg n− 2 comparisons are sufficient to find the second-largest
of n elements.
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Proof: As a first step, let’s find the maximum element using n− 1 comparisons, but in a tennis-
tournament or playoff structure. That is, we group elements into pairs, finding the maximum in
each pair, and recurse on the maxima. E.g.,

6      4     2     1     8     7     3     5

6 8 52

6 8

First round

Second round

Third rouund

8
Now, given just what we know from comparisons so far, what can we say about possible locations
for the second-highest number (i.e., the second-best player)? The answer is that the second-best
must have been directly compared to the best, and lost.3 This means there are only lg n possibilities
for the second-highest number, and we can find the maximum of them making only lg(n)− 1 more
comparisons.

At this point, we have a lower bound of n − 1 and an upper bound of n + lg(n) − 2, so they are
nearly tight. It turns out that, in fact, the lower bound can be improved to exactly meet the upper
bound.4

3Apparently first person to have pointed this out was Charles Dodgson (better known as Lewis Carroll!), writing
about the proper way to award prizes in lawn tennis tournaments.

4First shown by S.S. Kislitsyn “On the selection of the kth element of an ordered set by pairwise comparison,”
1964 (in Russian).


