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An Algorithms-based Intro to 
Machine Learning

Avrim Blum

CMU 15-451 lecture 11/29/07

[Based on a talk given at the 2003 National Academy 
of Sciences “Frontiers of Science” symposium]

•Models and basic issues
•An interesting algorithm for “combining 
expert advice”

Machine learning can be used to...
• recognize speech,
• identify patterns in data,
• steer a car,
• play games,
• adapt programs to users,
• categorize documents, ...

From a scientific perspective: can we develop 
models to understand learning as a computational 
problem, and what types of guarantees might we 
hope to achieve?

A typical setting
• Imagine you want a computer program to 

help you decide which email messages are 
spam and which are important.

• Might represent each message by n features. 
(e.g., return address, keywords, spelling, etc.)

• Take sample S of data, labeled according to 
whether they were/weren’t spam.

• Goal of algorithm is to use data seen so far 
produce good prediction rule (a “hypothesis”) 
h(x) for future data. 

The concept learning setting
E.g., 

The concept learning setting
E.g., 

Given data, some reasonable rules might be:
•Predict SPAM if unknown AND (size OR sales)

•Predict SPAM if sales + size – known > 0.

•...

Big questions

(A)How might we automatically generate 
rules that do well on observed data?

[algorithm design]

(B)What kind of confidence do we have 
that they will do well in the future?

[confidence bound / sample complexity]

for a given learning alg, how 
much data do we need...
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Power of basic paradigm

• E.g., document classification
– convert to bag-of-words

– Linear separators do well

• E.g., driving a car
– convert image into     

features.

– Use neural net with        
several outputs.

Many problems solved by converting to basic 
“concept learning from structured data” setting. 

Natural formalization (PAC)

• We are given sample S = {(x,y)}.
– Assume x’s come from some fixed probability 

distribution D over instance space.

– View labels y as being produced by some target 
function f. 

• Alg does optimization over S to produce 
some hypothesis (prediction rule) h.

• Goal is for h to do well on new examples 
also from D.

I.e., PrD[h(x)≠f(x)] < ε.

Example of analysis: Decision Lists

Say we suspect there might be a good prediction 
rule of this form.

1. Design an efficient algorithm A that will find a 
consistent DL if one exists.

2. Show that if |S| is of reasonable size, then 
Pr[exists consistent DL h with err(h) > ε] < δ.

3. This means that A is a good algorithm to use if 
f is, in fact, a DL.

(a bit of a toy example since usually never a 
perfect DL)

How can we find a consistent DL?

if (x1=0) then -, else
if (x2=1) then +, else

if (x4=1) then +, else -

Decision List algorithm
• Start with empty list.

• Find if-then rule consistent with data. 
(and satisfied by at least one example)

• Put rule at bottom of list so far, and cross off 
examples covered. Repeat until no examples remain.

If this fails, then:
•No DL consistent with remaining data.
•So, no DL consistent with original data.

OK, fine.  Now why should we expect it 
to do well on future data?

Confidence/sample-complexity
• Consider some DL h with err(h)>ε, that we’re 

worried might fool us.
• Chance that h survives m examples is at 

most (1-ε)m.
• Let |H| = number of DLs over n Boolean 

features.  |H| < n!4n. (for each feature there are 4 
possible rules, and no feature will appear more than once)

So, Pr[some DL h with err(h)>ε is consistent] 
< |H|(1-ε)m.

• This is <0.01 for m > (1/ε)[ln(|H|) + ln(100)]
or about (1/ε)[n ln n + ln(100)]
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Example of analysis: Decision Lists

Say we suspect there might be a good prediction 
rule of this form.

1. Design an efficient algorithm A that will find a 
consistent DL if one exists.

2. Show that if |S| is of reasonable size, then 
Pr[exists consistent DL h with err(h) > ε] < δ.

3. So, if f is in fact a DL, then whp A’s hypothesis 
will be approximately correct.  “PAC model”

DONE

DONE

Confidence/sample-complexity

• What’s great is there was nothing special 
about DLs in our argument.

• All we said was: “if there are not too many 
rules to choose from, then it’s unlikely one 
will have fooled us just by chance.”

• And in particular, the number of examples 
needs to only be proportional to log(|H|).

(notice big difference between 100 and e100.)

Occam’s razor
William of Occam (~1320 AD):

“entities should not be multiplied 
unnecessarily” (in Latin)

Which we interpret as: “in general, prefer 
simpler explanations”.

Why?  Is this a good policy?  What if we 
have different notions of what’s simpler?

Occam’s razor (contd)
A computer-science-ish way of looking at it:

• Say “simple” = “short description”.

• At most 2s explanations can be < s bits long.

• So, if the number of examples satisfies:

m > (1/ε)[s ln(2) + ln(100)]

Then it’s unlikely a bad simple explanation 
will fool you just by chance.

Think of as 
10x #bits to 

write down h.

Occam’s razor (contd)2

• Even if we have different notions of what’s 
simpler (e.g., different representation 
languages), we can both use Occam’s razor.

• Of course, there’s no guarantee there will 
be a short explanation for the data.  That 
depends on your representation.

Nice interpretation:

Further work
• Replace log(|H|) with “effective number of 

degrees of freedom”.

+

+

+

+

−
−

−

−

– There are infinitely many linear separators, but 
not that many really different ones.

• Other more refined analyses.
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Online learning
• What if we don’t want to make assumption 

that data is coming from some fixed 
distribution?  Or any assumptions on data?

• Can no longer talk about past performance 
predicting future results.

• Can we hope to say anything interesting at 
all??

Idea: regret bounds.  
Ø Show that our algorithm does nearly as well 
as best predictor in some large class.

Using “expert” advice

• We solicit n “experts” for their advice. (Will the 
market go up or down?)

• We then want to use their advice somehow to 
make our prediction.  E.g.,

Say we want to predict the stock market.

Basic question: Is there a strategy that allows us to do 
nearly as well as best of these in hindsight?

[“expert” = someone with an opinion.  Not necessarily 
someone who knows anything.]

Simpler question
• We have n “experts”.

• One of these is perfect (never makes a mistake).  
We just don’t know which one.

• Can we find a strategy that makes no more than 
lg(n) mistakes?

Answer: sure.  Just take majority vote over all 
experts that have been correct so far.

Ø Each mistake cuts # available by factor of 2.

Ø Note: this means ok for n to be very large.

What if no expert is perfect?
Intuition: Making a mistake doesn't completely 

disqualify an expert. So, instead of crossing 
off, just lower its weight.

Weighted Majority Alg:
– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.

Analysis: do nearly as well as best 
expert in hindsight

• M = # mistakes we've made so far.

• m = # mistakes best expert has made so far.

• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.

So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,

With improved settings/tweaks, can get M <1.07m + 8 lnn.

Randomized Weighted Majority
2.4(m + lg n) not so good if the best expert makes a 

mistake 20% of the time. Can we do better? Yes.

• Instead of taking majority vote, use weights as 
probabilities. (e.g., if 70% on up, 30% on down, then pick 
70:30) Idea: smooth out the worst case.

• Also, generalize � to 1- ε. 

M = expected 
#mistakes
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Analysis
• Say at time t we have fraction Ft of weight on 

experts that made mistake.

• So, we have probability Ft of making a mistake, and 
we remove an εFt fraction of the total weight.
– Wfinal = n(1-ε F1)(1 - ε F2)...

– ln(Wfinal) = ln(n) + ∑
t
[ln(1 - ε F

t
)] � ln(n) - ε ∑

t
F

t

(using ln(1-x) < -x)

= ln(n) - ε M.            (∑ Ft = E[# mistakes])

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-ε)m).

• Now solve: ln(n) - ε M > m ln(1-ε).

What can we use this for?

• Can use to combine multiple algorithms to 
do nearly as well as best in hindsight.
– E.g., online control policies. 

• Extension: “sleeping experts”.  E.g., one for 
each possible keyword.  Try to do nearly as 
well as best “coalition”.

• More extensions: “bandit problem”, 
movement costs.

Other models

• “Active learning”: have large unlabeled 
sample and alg may choose among these.
– E.g., web pages, image databases.

• Or, allow algorithm to construct its own 
examples. “Membership queries”
– E.g., features represent variable-settings in 

some experiment, label represents outcome.

– Gives algorithm more power.

Some scenarios allow more options for 
algorithm.

Conclusions/lessons

• Simple theoretical models can give insight 
into basic issues.  E.g., Occam’s razor.

• Even if models aren’t perfect, can often 
lead to good algorithms.

• Often diverse problems best solved by 
fitting into basic paradigm(s). 

• A lot of ongoing research into better 
algorithms, models that capture specific 
issues, incorporating Machine Learning 
into broader classes of applications.

Additional notes

• Some courses at CMU on machine learning: 

– 10-601 Machine Learning

– 10-701/15-781 Machine Learning

– 15-859(B) Machine Learning Theory.

• There is also a web site for the area as a whole 
at www.learningtheory.org, with pointers to 
survey articles, course notes, tutorials, and 
textbooks.


