CMU 15-451 lecture 11/29/07

An Algorithms-based Intro to Machine Learning

- ·Models and basic issues
- An interesting algorithm for "combining expert advice"

Avrim Blum

[Based on a talk given at the 2003 National Academy of Sciences "Frontiers of Science" symposium]

Machine learning can be used to...

- · recognize speech,
- · identify patterns in data,
- · steer a car,
- · play games,
- · adapt programs to users,
- · categorize documents, ...

From a scientific perspective: can we develop models to understand learning as a computational problem, and what types of guarantees might we hope to achieve?

A typical setting

- Imagine you want a computer program to help you decide which email messages are spam and which are important.
- Might represent each message by n features. (e.g., return address, keywords, spelling, etc.)
- Take sample 5 of data, labeled according to whether they were/weren't spam.
- Goal of algorithm is to use data seen so far produce good prediction rule (a "hypothesis") h(x) for future data.

The concept learning setting

E.g., sales size Mr. bad spelling known-sender spam?

The concept learning setting

F.a.	sales	size	Mr.	bad spelling	known-sender	spam?
9.,	Y	N	Υ	Y	N	Y
	Ν	N	Ν	Y	Y	N
	N	Υ	N	N	N	Y
	Y	N	N	N	Y	N
	N	N	Y	N	Υ	N
	Υ	N	N	Y	N	Y
	Ν	N	Y	N	N	N
	N.I		8.1		N.I.	

Given data, some reasonable rules might be:
•Predict SPAM if unknown AND (size OR sales)

·Predict SPAM if sales + size - known > 0.

•...

Big questions

(A)How might we automatically generate rules that do well on observed data?

[algorithm design]

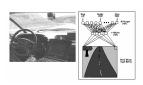
(B)What kind of confidence do we have that they will do well in the future? [confidence bound / sample complexity]

for a given learning alg, how much data do we need...

Power of basic paradigm

Many problems solved by converting to basic "concept learning from structured data" setting.

- E.g., document classification
 - convert to bag-of-words
 - Linear separators do well
- E.g., driving a car
 - convert image into features.
 - Use neural net with several outputs.



Natural formalization (PAC)

- We are given sample $S = \{(x,y)\}.$
 - Assume x's come from some fixed probability distribution D over instance space.
 - View labels y as being produced by some target function f.
- Alg does optimization over S to produce some hypothesis (prediction rule) h.
- Goal is for h to do well on new examples also from D.

I.e., $Pr_{D}[h(x)\neq f(x)] < \varepsilon$.

Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.

- 1. Design an efficient algorithm **A** that will find a consistent DL if one exists.
- 2. Show that if |S| is of reasonable size, then Pr[exists consistent DL h with err(h) > ϵ] < δ .
- This means that A is a good algorithm to use if f is, in fact, a DL. (a bit of a toy example since usually never a perfect DL)

How can we find a consistent DL?

		x_1	x_2	x_3	x_4	x_5	label	
		1	0	0	1	1	+	
_	\vdash	0	1	1	0	0	_	
_	⊢	1	1	1	0	0	+	
_	⊢	0	0	0	1	0	· -	
		1_	1	Ō	1	1	+	
		1	ō	Ō	0	1	_	

if $(x_1=0)$ then -, else

if $(x_2=1)$ then +, else

if $(x_4=1)$ then +, else -

Decision List algorithm

- Start with empty list.
- Find if-then rule consistent with data.
 (and satisfied by at least one example)
- Put rule at bottom of list so far, and cross off examples covered. Repeat until no examples remain.

If this fails, then:

- ·No DL consistent with remaining data.
- ·So, no DL consistent with original data.

OK, fine. Now why should we expect it to do well on future data?

Confidence/sample-complexity

- Consider some DL h with err(h)>€, that we're worried might fool us.
- Chance that h survives m examples is at most $(1-\epsilon)^m$.
- Let |H| = number of DLs over n Boolean features. |H| < n!4ⁿ. (for each feature there are 4 possible rules, and no feature will appear more than once)

So, $\Pr[\text{some DL h with err(h)} > \epsilon \text{ is consistent}] < |H|(1-\epsilon)^m.$

This is <0.01 for m > (1/ε)[ln(|H|) + ln(100)]
 or about (1/ε)[n ln n + ln(100)]

Example of analysis: Decision Lists

Say we suspect there might be a good prediction rule of this form.

Design an efficient algorithm **A** that will find a consistent DL if one exists.

2. Show that if |S| is of reasonable size, then Pr[exists consistent DL h with err(h) > ϵ] < δ .

3. So, if f is in fact a DL, then whp A's hypothesis will be approximately correct. "PAC model"

Confidence/sample-complexity

- What's great is there was nothing special about DLs in our argument.
- All we said was: "if there are not too many rules to choose from, then it's unlikely one will have fooled us just by chance."
- And in particular, the number of examples needs to only be proportional to log(|H|).

(notice big difference between 100 and e¹⁰⁰.)

Occam's razor

William of Occam (~1320 AD):

"entities should not be multiplied unnecessarily" (in Latin)

Which we interpret as: "in general, prefer simpler explanations".

Why? Is this a good policy? What if we have different notions of what's simpler?

Occam's razor (contd)

A computer-science-ish way of looking at it:

- Say "simple" = "short description".
- · At most 2s explanations can be < s bits long.
- · So, if the number of examples satisfies:

Think of as 10x #bits to write down h. Think of as $(1/\epsilon)[s \ln(2) + \ln(100)]$

Then it's unlikely a bad simple explanation will fool you just by chance.

Occam's razor (contd)2

Nice interpretation:

- Even if we have different notions of what's simpler (e.g., different representation languages), we can both use Occam's razor.
- Of course, there's no guarantee there will be a short explanation for the data. That depends on your representation.

Further work

 Replace log(|H|) with "effective number of degrees of freedom".

- There are infinitely many linear separators, but not that many really different ones.
- Other more refined analyses.

Online learning

- What if we don't want to make assumption that data is coming from some fixed distribution? Or any assumptions on data?
- Can no longer talk about past performance predicting future results.
- Can we hope to say anything interesting at all??

Idea: regret bounds.

ØShow that our algorithm does nearly as well as best predictor in some large class.

Using "expert" advice

Say we want to predict the stock market.

- We solicit n "experts" for their advice. (Will the market go up or down?)
- We then want to use their advice somehow to make our prediction. E.g.,

Expt 1	Expt 2	Expt 3	neighbor's dog	truth
down	up	ир	up	up
down	up	up	down	down

Basic question: Is there a strategy that allows us to do nearly as well as best of these in hindsight?

["expert" = someone with an opinion. Not necessarily someone who knows anything.]

Simpler question

- · We have n "experts".
- One of these is perfect (never makes a mistake).
 We just don't know which one.
- Can we find a strategy that makes no more than lg(n) mistakes?

Answer: sure. Just take majority vote over all experts that have been correct so far.

ØEach mistake cuts # available by factor of 2.

ØNote: this means ok for n to be very large.

What if no expert is perfect?

Intuition: Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half. $$^{\rm prediction}$$

 weights
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</

Analysis: do nearly as well as best expert in hindsight

- M = # mistakes we've made so far.
- m = # mistakes best expert has made so far.
- W = total weight (starts at n).
- After each mistake, W drops by at least 25%.
 So, after M mistakes, W is at most n(3/4)^M.
- Weight of best expert is (1/2)^m. So,

$$(1/2)^m \le n(3/4)^M$$

 $(4/3)^M \le n2^m$
 $M \le 2.4(m + \lg n)$

With improved settings/tweaks, can get $M < 1.07m + 8 \ln n$.

Randomized Weighted Majority

- 2.4(m + lg n) not so good if the best expert makes a mistake 20% of the time. Can we do better? Yes.
- Instead of taking majority vote, use weights as probabilities. (e.g., if 70% on up, 30% on down, then pick 70:30) Idea: smooth out the worst case.
- · Also, generalize ½ to 1- ε.

Solves to:
$$M \leq \frac{-m \ln(1-\varepsilon) + \ln(n)}{\varepsilon} \approx (1+\varepsilon/2)m + \frac{1}{\varepsilon} \ln(n)$$

$$\begin{array}{c} \text{M = expected} \\ \text{\#mistakes} \end{array} \begin{array}{c} M \leq 1.39m + 2 \ln n & \leftarrow \varepsilon = 1/2 \end{array}$$

$$M \leq 1.15m + 4 \ln n & \leftarrow \varepsilon = 1/4$$

$$M \leq 1.07m + 8 \ln n & \leftarrow \varepsilon = 1/8 \end{array}$$

<u>Analysis</u>

- Say at time t we have fraction \boldsymbol{F}_t of weight on experts that made mistake.
- So, we have probability $F_{\rm t}$ of making a mistake, and we remove an $\epsilon F_{\rm t}$ fraction of the total weight.
 - W_{final} = $n(1-\epsilon F_1)(1-\epsilon F_2)...$
 - $\ln(W_{\text{final}})$ = $\ln(n)$ + $\sum_{t} \left[\ln(1 \epsilon F_{t})\right] \le \ln(n) \epsilon \sum_{t} F_{t}$ (using $\ln(1-x) < -x$)

= $ln(n) - \epsilon M$.

 $(\sum F_t = E[\# mistakes])$

- If best expert makes m mistakes, then $ln(W_{final}) > ln((1-\epsilon)^m)$.
- Now solve: ln(n) ε M > m ln(1-ε).

$$M \ \leq \ \frac{-m \ln(1-\varepsilon) + \ln(n)}{\varepsilon} \, \approx \ (1+\varepsilon/2)m + \frac{1}{\varepsilon} \log(n)$$

What can we use this for?

- Can use to combine multiple algorithms to do nearly as well as best in hindsight.
 - E.g., online control policies.
- Extension: "sleeping experts". E.g., one for each possible keyword. Try to do nearly as well as best "coalition".
- More extensions: "bandit problem", movement costs.

Other models

Some scenarios allow more options for algorithm.

- "Active learning": have large unlabeled sample and alg may choose among these.
 - E.g., web pages, image databases.
- Or, allow algorithm to construct its own examples. "Membership queries"
 - E.g., features represent variable-settings in some experiment, label represents outcome.
 - Gives algorithm more power.

Conclusions/lessons

- Simple theoretical models can give insight into basic issues. E.g., Occam's razor.
- Even if models aren't perfect, can often lead to good algorithms.
- Often diverse problems best solved by fitting into basic paradigm(s).
- A lot of ongoing research into better algorithms, models that capture specific issues, incorporating Machine Learning into broader classes of applications.

Additional notes

- · Some courses at CMU on machine learning:
 - 10-601 Machine Learning
 - 10-701/15-781 Machine Learning
 - 15-859(B) Machine Learning Theory.
- There is also a web site for the area as a whole at <u>www.learningtheory.org</u>, with pointers to survey articles, course notes, tutorials, and textbooks.