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15-451: Algorithms

Le
ture 1: Introdu
tion, Karatsuba's Algorithm

1 Overview

The purpose of this le
ture is to give a brief overview of the topi
 of Algorithms and the kind of thinking

it involves: why we fo
us on the subje
ts that we do, and why we emphasize proving guarantees. We

also go through an example of a problem that is easy to relate to (multiplying two numbers) in whi
h the

straightforward approa
h is surprisingly not ne
essarily the best one. This example leads naturally into

the study of re
urren
es, whi
h is the topi
 of the next le
ture, and provides a forward pointer to topi
s

su
h as the FFT later on in the 
ourse.

Material in this le
ture:

� Administrivia (see handout from web page)

� What is the study of Algorithms all about?

� Why do we 
are about spe
i�
ation and proving guarantees?

� The Karatsuba multipli
ation algorithm.

� Strassen's matrix multipli
ation algorithm.

2 Introdu
tion

This 
ourse is about the design and analysis of algorithms | how to design 
orre
t, eÆ
ient algorithms,

and how to think 
learly about analyzing their 
orre
tness and running time.

What is an algorithm? At its most basi
, an algorithm is a method for solving a 
omputational problem.

Along with an algorithm 
omes a spe
i�
ation that says what the algorithm's guarantees are. For example,

we might be able to say that our algorithm indeed 
orre
tly solves the problem in question and runs in

time at most f(n) on an input of size n. This 
ourse is about the whole pa
kage: the design of eÆ
ient

algorithms, and proving that they meet desired spe
i�
ations. For ea
h of these parts, we will examine

important te
hniques that have been developed, and with pra
ti
e we will build up our ability to think


learly about the key issues that arise.

The main goal of this 
ourse is to provide students with intelle
tual tools for designing and analyzing their

own algorithms for problems they need to solve in the future. Some tools we will dis
uss are Dynami


Programming, Divide-and-Conquer, Data Stru
ture design prin
iples, Randomization, Network Flows,

Linear Programming, and the Fast Fourier Transform. Some analyti
al tools we will dis
uss and use are

Re
urren
es, Probabilisti
 Analysis, Amortized Analysis, and Potential Fun
tions.

There is also a dual to algorithm design: Complexity Theory. Complexity Theory looks at the intrinsi


diÆ
ulty of 
omputational problems | what kinds of spe
i�
ations 
an we expe
t not to be able to

a
hieve? In this 
ourse, we will delve a bit into 
omplexity theory, fo
using on the somewhat surpris-

ing and 
ounter-intuitive notion of NP-
ompleteness. We will also spend some time on 
ryptography.

Cryptography is interesting from the point of view of algorithm design be
ause one uses a problem that's
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assumed to be intrinsi
ally hard in order to 
onstru
t an algorithm (e.g., an en
ryption method) whose

se
urity rests on the diÆ
ulty of solving that hard problem.

3 On guarantees and spe
i�
ations

One fo
us of this 
ourse is on proving 
orre
tness and running-time guarantees for algorithms. Why is

having su
h a guarantee useful? Suppose we are talking about the problem of sorting a list of n numbers.

It is pretty 
lear that it is ni
e to know at least that our algorithm produ
es 
orre
t solutions, so we don't

have to worry about whether it has given us the right answer all the time. But, why analyze running

time? Why not just 
ode up our algorithm and test it on 100 random inputs and see what happens? Here

are a few reasons that motivate our 
on
ern with this kind of analysis:

Composability. A guarantee on running time gives a type of \
lean interfa
e". It means that we 
an

use the algorithm as a subroutine in some other algorithm, without needing to worry whether the

kinds of inputs on whi
h it is being used now ne
essarily mat
h the kinds of inputs on whi
h it was

originally tested.

S
aling. The types of guarantees we will examine will tell us how the running time s
ales with the size

of the problem instan
e. This is useful to know for a variety of reasons. For instan
e, it tells us

roughly how large a problem size we 
an reasonably expe
t to handle.

Designing better algorithms. Analyzing the asymptoti
 running time of algorithms has shown itself

to be a useful way of thinking about algorithms that often leads to nonobvious improvements.

Understanding. An analysis 
an tell us what parts of an algorithm are 
ru
ial for what kinds of inputs,

and why. If we later get a di�erent but related task, we 
an often use our analysis to qui
kly tell

us if a small modi�
ation to our existing algorithm 
an be expe
ted to give similar performan
e to

the new problem.

Complexity-theoreti
 motivation. In Complexity Theory, we want to know: \how hard is fundamen-

tal problem X really?" For instan
e, we might know that no algorithm 
an possibly run in time

o(n log n) (growing more slowly than n logn in the limit) and we have an algorithm that runs in

time O(n

3=2

). This tells us how well we understand the problem, and also how mu
h room for

improvement we have.

You 
an probably think of more reasons too.

4 Problems and Algorithms

The purpose of an algorithm is solve a 
ombinatorial problem. Here is a list of typi
al examples.

1. Given a number, determine whether it is a prime.

2. Given a number, �nd the least prime larger that the given number.

3. Given a number, determine one of its prime fa
tors.

4. Given a number, determine all its prime fa
tors.

5. Given a dire
ted graph, determine the number of its SCCs.
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6. Given a dire
ted graph, de
ompose it into its SCCs.

7. Given a dire
ted graph, test whether it a
y
li
.

8. Given a polynomial, 
ount its real roots.

9. Given a graph, �nd a perfe
t mat
hing.

Needless to say, truly interesting questions su
h as \what will be next week's lotto numbers?" won't be


onsidered here.

There are di�erent types of problems one has to 
ontend with. Here are the most important ones.

� De
ision Problems

Here we are really asking a question, and the output is YES or NO. Typi
ally we want to know

whether the input has some spe
ial property or not.

� Fun
tion Problems

These are perhaps the most important ones in appli
ations. We are given some problem instan
e x

and have to 
ompute a uniquely determined solution z.

� Sear
h Problems

In a sear
h problem, a given instan
e is asso
iated with a set of solutions. The goal is to �nd one

of these solutions, or to return NO if the set of solutions is empty.

Given this taxonomy we 
an 
lassify the sample problems from above as follows. Problem 1 is a de
ision

problem:

Problem: Primality

Instan
e: A positive integer n.

Question: Is n prime?

Problem 2 is a fun
tion problem, we have to 
al
ulate an integer.

Problem: Next Prime

Instan
e: A positive integer n.

Solution: The least integer m > n that is prime.

Problem 3 is a sear
h problem.

Problem: Prime Fa
tor

Instan
e: A positive integer n � 2.

Solution: Any prime p that divides n.

Make sure to �gure out the type of all the other problems in the list above.

Note that for any problem instan
e x there is always a natural notion of the size of x, written jxj: 
ount

the number of bits needed to write down the instan
e. The only potentially tri
ky item here are numbers.

We will always assume that numbers are represented in binary, so to represent n we need about log

2

n

bits.
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4.1 Time Complexity

One important way to assess the quality of an algorithm is to measure its running time. There are two

natural ways of doing this.

� A
tual physi
al running time

� Logi
al running time: number of steps needed to exe
ute the algorithm.

One step is not 
learly de�ned, think of in simply as one CPU 
y
le. A little less informally, Let P be a

program implementing some algorithm. De�ne the running time of P on input x as

T

P

(x) = # steps in the exe
ution of P on input x:

This is a bit too 
ompli
ated to deal with in general, an easier measure is worst 
ase running time of all

inputs of the same size:

T

P

(n) = max

�

T

P

(x)

�

�

x an instan
e of size n

�

This is somewhat pessimisti
, a better measure is average 
ase running time

T

avg

P

(n) =

X

jxj=n

p

x

� T

P

(x)

Here p

x

is the probability of instan
e x.

5 An example: Karatsuba Multipli
ation

One of things that makes algorithm design \Computer S
ien
e" is that solving a problem in the most

obvious way from its de�nitions is often not the best way to get a solution. A simple example of this is

multipli
ation.

Say we want to multiply two n-bit numbers: for example, 41 � 42 (or, in binary, 101001 � 101010).

A

ording to the de�nition of what it means to multiply, what we are looking for is the result of adding

41 to itself 42 times (or vi
e versa). You 
ould imagine a
tually 
omputing the answer that way (i.e.,

performing 41 additions), whi
h would be 
orre
t but not parti
ularly eÆ
ient. If we used this approa
h

to multiply two n-bit numbers, we would be making �(2

n

) additions. This is exponential in n even

without 
ounting the number of steps needed to perform ea
h addition. And, in general, exponential is

bad.

1

A better way to multiply is to do what we learned in grade s
hool:

101001

x 101010

-------------

1010010

101001

1

This is reminis
ent of an exponential-time sorting algorithm I on
e saw in Prolog. The 
ode just 
ontains the de�nition

of what it means to sort the input | namely, to produ
e a permutation of the input in whi
h all elements are in as
ending

order. When handed dire
tly to the interpreter, it results in an algorithm that examines all n! permutations of the given

input list until it �nds one that is in the right order.
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+ 101001

-------------

11010111010 = 1722

The running time here is O(n

2

), be
ause we are performing n additions, ea
h of whi
h takes O(n) time. So,

this is a simple example where even though the problem is de�ned \algorithmi
ally", using the de�nition

is not the best way of solving the problem.

Is the above method the fastest way to multiply two numbers? It turns out it is not. Here is a faster

method 
alled Karatsuba Multipli
ation, dis
overed by Anatoli Karatsuba, in Russia, in 1962. In this

approa
h, we take the two numbers X and Y and split them ea
h into their most-signi�
ant half and

their least-signi�
ant half.

---------------

X = A*2^{n/2} + B | A | B |

+-------------+

Y = C*2^{n/2} + D | C | D |

---------------

We 
an now write the produ
t of X and Y as

XY = 2

n

AC + 2

n=2

BC + 2

n=2

AD +BD: (1)

This does not yet seem so useful. If we use (1) as a re
ursive multipli
ation algorithm, we need to

perform four n=2-bit multipli
ations, three shifts, and three O(n)-bit additions. If we use T (n) to denote

the running time to multiply two n-bit numbers by this method, this gives us a re
urren
e of

T (n) = 4T (n=2) + 
n; (2)

for some 
onstant 
. (The 
n term re
e
ts the time to perform the additions and shifts.) This re
urren
e

solves to O(n

2

), so we do not seem to have made any progress. (In the next le
ture we will go into the

details of how to solve re
urren
es like this.)

However, we 
an take the formula in (1) and rewrite it as follows:

(2

n

+ 2

n=2

)AC � 2

n=2

(A�B)(C �D) + (2

n=2

+ 1)BD: (3)

It is not hard to see | you just need to multiply it out | that the formula in (3) is equivalent to the

expression in (1). The new formula looks more 
ompli
ated, but, it results in only three multipli
ations

of size n=2, plus a 
onstant number of shifts and additions. So, the resulting re
urren
e is

T (n) = 3T (n=2) + 
n; (4)

for some 
onstant 
. This re
urren
e solves to O(n

log

2

(3)

) � O(n

1:585

).

Is this method the fastest possible? Again it turns out that one 
an do better. In fa
t, Karp dis
overed

a way to use the Fast Fourier Transform to multiply two n-bit numbers in time O(n log

2

n). S
h�onhage

and Strassen in 1971 improved this to O(n log n log log n), whi
h is, asymptoti
ally, the fastest algorithm

known. We will dis
uss the FFT later on in this 
ourse.

A
tually, the kind of analysis we have been doing really is meaningful only for very large numbers. On

a 
omputer, if you are multiplying numbers that �t into the word size, you would do this in hardware

that has gates working in parallel. So instead of looking at sequential running time, in this 
ase we would

want to examine the size and depth of the 
ir
uit used, for instan
e. This points out that, in fa
t, there

are di�erent kinds of spe
i�
ations that 
an be important in di�erent settings.
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6 Matrix multipli
ation

It turns out the same basi
 divide-and-
onquer approa
h of Karatsuba's algorithm 
an be used to speed

up matrix multipli
ation as well. To multiply two n-by-n matri
es in the usual way takes time O(n

3

). If

one breaks down ea
h n by n matrix into four n=2 by n=2 matri
es, then the standard method 
an be

thought of as performing eight n=2-by-n=2 multipli
ations and four additions as follows:

A B

C D

�

E F

G H

=

AE +BG AF +BH

CE +DG CF +DH

Strassen noti
ed that, as in Karatsuba's algorithm, one 
an 
leverly rearrange the 
omputation to involve

only seven n=2-by-n=2 multipli
ations (and 14 additions).

2

This results in a re
urren
e of

T (n) = 7T (n=2) + 
n

2

: (5)

(Adding two n-by-n matri
es takes time O(n

2

).) This re
urren
e solves to a running time of just

O(n

log

2

7

) � O(n

2:81

) for Strassen's algorithm.

Matrix multipli
ation is espe
ially important in s
ienti�
 
omputation. Strassen's algorithm has more

overhead than standard method, but it is the preferred method on many modern 
omputers for even

modestly large matri
es. Asymptoti
ally, the best matrix multiply algorithm known is by Coppersmith

and Winograd and has time O(n

2:376

), but is not pra
ti
al. Nobody knows if it is possible to do better

| the FFT approa
h doesn't seem to 
arry over.

2

In parti
ular, the quantities that one 
omputes re
ursively are q

1

= (A+D)(E+H), q

2

= D(G�E), q

3

= (B�D)(G+H),

q

4

= (A + B)H, q

5

= (C + D)E, q

6

= A(F � H), and q

7

= (C � A)(E + F ). The upper-left quadrant of the solution is

q

1

+ q

2

+ q

3

� q

4

, the upper-right is q

4

+ q

6

, the lower-left is q

2

+ q

5

, and the lower right is q

1

� q

5

+ q

6

+ q

7

. (feel free to


he
k!)


