
15-451 Le. 1 1

15-451: Algorithms

Leture 1: Introdution, Karatsuba's Algorithm

1 Overview

The purpose of this leture is to give a brief overview of the topi of Algorithms and the kind of thinking

it involves: why we fous on the subjets that we do, and why we emphasize proving guarantees. We

also go through an example of a problem that is easy to relate to (multiplying two numbers) in whih the

straightforward approah is surprisingly not neessarily the best one. This example leads naturally into

the study of reurrenes, whih is the topi of the next leture, and provides a forward pointer to topis

suh as the FFT later on in the ourse.

Material in this leture:

� Administrivia (see handout from web page)

� What is the study of Algorithms all about?

� Why do we are about spei�ation and proving guarantees?

� The Karatsuba multipliation algorithm.

� Strassen's matrix multipliation algorithm.

2 Introdution

This ourse is about the design and analysis of algorithms | how to design orret, eÆient algorithms,

and how to think learly about analyzing their orretness and running time.

What is an algorithm? At its most basi, an algorithm is a method for solving a omputational problem.

Along with an algorithm omes a spei�ation that says what the algorithm's guarantees are. For example,

we might be able to say that our algorithm indeed orretly solves the problem in question and runs in

time at most f(n) on an input of size n. This ourse is about the whole pakage: the design of eÆient

algorithms, and proving that they meet desired spei�ations. For eah of these parts, we will examine

important tehniques that have been developed, and with pratie we will build up our ability to think

learly about the key issues that arise.

The main goal of this ourse is to provide students with intelletual tools for designing and analyzing their

own algorithms for problems they need to solve in the future. Some tools we will disuss are Dynami

Programming, Divide-and-Conquer, Data Struture design priniples, Randomization, Network Flows,

Linear Programming, and the Fast Fourier Transform. Some analytial tools we will disuss and use are

Reurrenes, Probabilisti Analysis, Amortized Analysis, and Potential Funtions.

There is also a dual to algorithm design: Complexity Theory. Complexity Theory looks at the intrinsi

diÆulty of omputational problems | what kinds of spei�ations an we expet not to be able to

ahieve? In this ourse, we will delve a bit into omplexity theory, fousing on the somewhat surpris-

ing and ounter-intuitive notion of NP-ompleteness. We will also spend some time on ryptography.

Cryptography is interesting from the point of view of algorithm design beause one uses a problem that's

15-451 Le. 1 2

assumed to be intrinsially hard in order to onstrut an algorithm (e.g., an enryption method) whose

seurity rests on the diÆulty of solving that hard problem.

3 On guarantees and spei�ations

One fous of this ourse is on proving orretness and running-time guarantees for algorithms. Why is

having suh a guarantee useful? Suppose we are talking about the problem of sorting a list of n numbers.

It is pretty lear that it is nie to know at least that our algorithm produes orret solutions, so we don't

have to worry about whether it has given us the right answer all the time. But, why analyze running

time? Why not just ode up our algorithm and test it on 100 random inputs and see what happens? Here

are a few reasons that motivate our onern with this kind of analysis:

Composability. A guarantee on running time gives a type of \lean interfae". It means that we an

use the algorithm as a subroutine in some other algorithm, without needing to worry whether the

kinds of inputs on whih it is being used now neessarily math the kinds of inputs on whih it was

originally tested.

Saling. The types of guarantees we will examine will tell us how the running time sales with the size

of the problem instane. This is useful to know for a variety of reasons. For instane, it tells us

roughly how large a problem size we an reasonably expet to handle.

Designing better algorithms. Analyzing the asymptoti running time of algorithms has shown itself

to be a useful way of thinking about algorithms that often leads to nonobvious improvements.

Understanding. An analysis an tell us what parts of an algorithm are ruial for what kinds of inputs,

and why. If we later get a di�erent but related task, we an often use our analysis to quikly tell

us if a small modi�ation to our existing algorithm an be expeted to give similar performane to

the new problem.

Complexity-theoreti motivation. In Complexity Theory, we want to know: \how hard is fundamen-

tal problem X really?" For instane, we might know that no algorithm an possibly run in time

o(n log n) (growing more slowly than n logn in the limit) and we have an algorithm that runs in

time O(n

3=2

). This tells us how well we understand the problem, and also how muh room for

improvement we have.

You an probably think of more reasons too.

4 Problems and Algorithms

The purpose of an algorithm is solve a ombinatorial problem. Here is a list of typial examples.

1. Given a number, determine whether it is a prime.

2. Given a number, �nd the least prime larger that the given number.

3. Given a number, determine one of its prime fators.

4. Given a number, determine all its prime fators.

5. Given a direted graph, determine the number of its SCCs.

15-451 Le. 1 3

6. Given a direted graph, deompose it into its SCCs.

7. Given a direted graph, test whether it ayli.

8. Given a polynomial, ount its real roots.

9. Given a graph, �nd a perfet mathing.

Needless to say, truly interesting questions suh as \what will be next week's lotto numbers?" won't be

onsidered here.

There are di�erent types of problems one has to ontend with. Here are the most important ones.

� Deision Problems

Here we are really asking a question, and the output is YES or NO. Typially we want to know

whether the input has some speial property or not.

� Funtion Problems

These are perhaps the most important ones in appliations. We are given some problem instane x

and have to ompute a uniquely determined solution z.

� Searh Problems

In a searh problem, a given instane is assoiated with a set of solutions. The goal is to �nd one

of these solutions, or to return NO if the set of solutions is empty.

Given this taxonomy we an lassify the sample problems from above as follows. Problem 1 is a deision

problem:

Problem: Primality

Instane: A positive integer n.

Question: Is n prime?

Problem 2 is a funtion problem, we have to alulate an integer.

Problem: Next Prime

Instane: A positive integer n.

Solution: The least integer m > n that is prime.

Problem 3 is a searh problem.

Problem: Prime Fator

Instane: A positive integer n � 2.

Solution: Any prime p that divides n.

Make sure to �gure out the type of all the other problems in the list above.

Note that for any problem instane x there is always a natural notion of the size of x, written jxj: ount

the number of bits needed to write down the instane. The only potentially triky item here are numbers.

We will always assume that numbers are represented in binary, so to represent n we need about log

2

n

bits.

15-451 Le. 1 4

4.1 Time Complexity

One important way to assess the quality of an algorithm is to measure its running time. There are two

natural ways of doing this.

� Atual physial running time

� Logial running time: number of steps needed to exeute the algorithm.

One step is not learly de�ned, think of in simply as one CPU yle. A little less informally, Let P be a

program implementing some algorithm. De�ne the running time of P on input x as

T

P

(x) = # steps in the exeution of P on input x:

This is a bit too ompliated to deal with in general, an easier measure is worst ase running time of all

inputs of the same size:

T

P

(n) = max

�

T

P

(x)

�

�

x an instane of size n

�

This is somewhat pessimisti, a better measure is average ase running time

T

avg

P

(n) =

X

jxj=n

p

x

� T

P

(x)

Here p

x

is the probability of instane x.

5 An example: Karatsuba Multipliation

One of things that makes algorithm design \Computer Siene" is that solving a problem in the most

obvious way from its de�nitions is often not the best way to get a solution. A simple example of this is

multipliation.

Say we want to multiply two n-bit numbers: for example, 41 � 42 (or, in binary, 101001 � 101010).

Aording to the de�nition of what it means to multiply, what we are looking for is the result of adding

41 to itself 42 times (or vie versa). You ould imagine atually omputing the answer that way (i.e.,

performing 41 additions), whih would be orret but not partiularly eÆient. If we used this approah

to multiply two n-bit numbers, we would be making �(2

n

) additions. This is exponential in n even

without ounting the number of steps needed to perform eah addition. And, in general, exponential is

bad.

1

A better way to multiply is to do what we learned in grade shool:

101001

x 101010

1010010

101001

1

This is reminisent of an exponential-time sorting algorithm I one saw in Prolog. The ode just ontains the de�nition

of what it means to sort the input | namely, to produe a permutation of the input in whih all elements are in asending

order. When handed diretly to the interpreter, it results in an algorithm that examines all n! permutations of the given

input list until it �nds one that is in the right order.

15-451 Le. 1 5

+ 101001

11010111010 = 1722

The running time here is O(n

2

), beause we are performing n additions, eah of whih takes O(n) time. So,

this is a simple example where even though the problem is de�ned \algorithmially", using the de�nition

is not the best way of solving the problem.

Is the above method the fastest way to multiply two numbers? It turns out it is not. Here is a faster

method alled Karatsuba Multipliation, disovered by Anatoli Karatsuba, in Russia, in 1962. In this

approah, we take the two numbers X and Y and split them eah into their most-signi�ant half and

their least-signi�ant half.

X = A*2^{n/2} + B | A | B |

+-------------+

Y = C*2^{n/2} + D | C | D |

We an now write the produt of X and Y as

XY = 2

n

AC + 2

n=2

BC + 2

n=2

AD +BD: (1)

This does not yet seem so useful. If we use (1) as a reursive multipliation algorithm, we need to

perform four n=2-bit multipliations, three shifts, and three O(n)-bit additions. If we use T (n) to denote

the running time to multiply two n-bit numbers by this method, this gives us a reurrene of

T (n) = 4T (n=2) + n; (2)

for some onstant . (The n term reets the time to perform the additions and shifts.) This reurrene

solves to O(n

2

), so we do not seem to have made any progress. (In the next leture we will go into the

details of how to solve reurrenes like this.)

However, we an take the formula in (1) and rewrite it as follows:

(2

n

+ 2

n=2

)AC � 2

n=2

(A�B)(C �D) + (2

n=2

+ 1)BD: (3)

It is not hard to see | you just need to multiply it out | that the formula in (3) is equivalent to the

expression in (1). The new formula looks more ompliated, but, it results in only three multipliations

of size n=2, plus a onstant number of shifts and additions. So, the resulting reurrene is

T (n) = 3T (n=2) + n; (4)

for some onstant . This reurrene solves to O(n

log

2

(3)

) � O(n

1:585

).

Is this method the fastest possible? Again it turns out that one an do better. In fat, Karp disovered

a way to use the Fast Fourier Transform to multiply two n-bit numbers in time O(n log

2

n). Sh�onhage

and Strassen in 1971 improved this to O(n log n log log n), whih is, asymptotially, the fastest algorithm

known. We will disuss the FFT later on in this ourse.

Atually, the kind of analysis we have been doing really is meaningful only for very large numbers. On

a omputer, if you are multiplying numbers that �t into the word size, you would do this in hardware

that has gates working in parallel. So instead of looking at sequential running time, in this ase we would

want to examine the size and depth of the iruit used, for instane. This points out that, in fat, there

are di�erent kinds of spei�ations that an be important in di�erent settings.

15-451 Le. 1 6

6 Matrix multipliation

It turns out the same basi divide-and-onquer approah of Karatsuba's algorithm an be used to speed

up matrix multipliation as well. To multiply two n-by-n matries in the usual way takes time O(n

3

). If

one breaks down eah n by n matrix into four n=2 by n=2 matries, then the standard method an be

thought of as performing eight n=2-by-n=2 multipliations and four additions as follows:

A B

C D

�

E F

G H

=

AE +BG AF +BH

CE +DG CF +DH

Strassen notied that, as in Karatsuba's algorithm, one an leverly rearrange the omputation to involve

only seven n=2-by-n=2 multipliations (and 14 additions).

2

This results in a reurrene of

T (n) = 7T (n=2) + n

2

: (5)

(Adding two n-by-n matries takes time O(n

2

).) This reurrene solves to a running time of just

O(n

log

2

7

) � O(n

2:81

) for Strassen's algorithm.

Matrix multipliation is espeially important in sienti� omputation. Strassen's algorithm has more

overhead than standard method, but it is the preferred method on many modern omputers for even

modestly large matries. Asymptotially, the best matrix multiply algorithm known is by Coppersmith

and Winograd and has time O(n

2:376

), but is not pratial. Nobody knows if it is possible to do better

| the FFT approah doesn't seem to arry over.

2

In partiular, the quantities that one omputes reursively are q

1

= (A+D)(E+H), q

2

= D(G�E), q

3

= (B�D)(G+H),

q

4

= (A + B)H, q

5

= (C + D)E, q

6

= A(F � H), and q

7

= (C � A)(E + F). The upper-left quadrant of the solution is

q

1

+ q

2

+ q

3

� q

4

, the upper-right is q

4

+ q

6

, the lower-left is q

2

+ q

5

, and the lower right is q

1

� q

5

+ q

6

+ q

7

. (feel free to

hek!)

