
Theory of NP-
Completeness

Topics:
• Turing Machines
• Cook’s Theorem
• Implications

CS 451 S’01NP-complete.ppt

15-451
Algorithms

Randal E. Bryant
April 11, 2001

CS 451 S’01–2–NP-complete.ppt

Turing Machine
Formal Model of Computer

• Very primitive, but computationally complete

Program
Controller

State

B 0 1 1 0 B B B B • • •• • •
Head

Action

Tape

CS 451 S’01–3–NP-complete.ppt

Turing Machine Components
Tape

• Conceptually infinite number of “squares” in both directions
• Each square holds one “symbol”

– From a finite alphabet
• Initially holds input + copies of blank symbol ‘B’

Tape Head
• On each step

– Read current symbol
– Write new symbol
– Move Left or Right one position

CS 451 S’01–4–NP-complete.ppt

Components (Cont.)
Controller

• Has state between 0 and m-1
– Initial state = 0
– Accepting state = m-1

• Performs steps
– Read symbol
– Write new symbol
– Move head left or right

Program
• Set of allowed controller actions
• Current State, Read Symbol → New State, Write Symbol, L|R

CS 451 S’01–5–NP-complete.ppt

Turing Machine Program Example
Language Recognition

• Determine whether input is string of form 0n1n

Input Examples

• Should reach state m-1

• Should never reach state m-1
B 0 0 0 0 1 1 1 B • • •• • •

B 0 0 0 1 1 1 B B • • •• • •

CS 451 S’01–6–NP-complete.ppt

Algorithm
• Keep erasing 0 on left and 1 on right
• Terminate and accept when have blank tape

B 0 0 0 1 1 1 B B • • •• • •

B B 0 0 1 1 B B B • • •• • •

B B B 0 1 B B B B • • •• • •

B B B B B B B B B • • •• • •

CS 451 S’01–7–NP-complete.ppt

Program
States

• 0 Initial
• 1 Check Left
• 2 Scan Right
• 3 Check Right
• 4 Scan Left
• 5 Accept

1,B,R — —

Read Symbol
B 0 1

Cu
rr

en
t

St
at

e

5,B,R 2,B,R —
3,B,L 2,0,R 2,1,R

— — 4,B,L
1,B,R 4,0,L 4,1,L

0
1
2
3
4

— — —5

‘— ’ means no possible action from this point

Deterministic TM: At most one possible action at any point

CS 451 S’01–8–NP-complete.ppt

Non Deterministic Turing Machine
Language Recognition

• Determine whether input is string of form xx
• For some string x ∈ {0,1}*

Input Examples

• Should reach state m-1

• Should never reach state m-1
B 0 1 1 0 1 1 1 B • • •• • •

B 0 1 1 0 1 1 B B • • •• • •

CS 451 S’01–9–NP-complete.ppt

Nondeterministic Algorithm

• Record leftmost symbol and set to B

• Scan right, stopping at arbitrary position with matching symbol,
and mark it with 2

• Scan left to end, and run program to recognize x2+x

B 0 0 1 0 0 1 B B • • •• • •

B B 0 1 0 0 1 B B • • •• • •

B B 0 1 2 0 1 B B • • •• • •

B B 0 1 2 0 1 B B • • •• • •

CS 451 S’01–10–NP-complete.ppt

Nondeterministic Algorithm
• Might make bad guess

• Program will never reach accepting state
Rule

• String accepted as long as reach accepting state for some
sequence of steps

B B 0 1 0 2 1 B B • • •• • •

B B 2 1 0 0 1 B B • • •• • •

CS 451 S’01–11–NP-complete.ppt

Nondeterministic Program
States

• 0 Initial
• 1 Record
• 2 Look for 0
• 3 Look for 1
• 4 Scan Left
• 5+ Rest of program

1,B,R — —

Read Symbol
B 0 1

Cu
rr

en
t

St
at

e

accept,B,R 2,B,R 3,B,R
— 2,0,R 4,2,L 2,1,R
— 3,0,R 3,1,R 4,2,L

5,B,R 4,0,L 4,1,L

0
1
2
3
4

Nondeterministic TM: ≥ 2 possible actions from single point

CS 451 S’01–12–NP-complete.ppt

Turing Machine Complexity
Machine M Recognizes Input String x

• Initialize tape to x
• Consider all possible execution sequences
• Accept in time t if can reach accepting state in t steps

– t(x): Length of shortest accepting sequence for input x
Language of Machine L(M)

• Set of all strings that machine accepts
• x ∉ L when no execution sequence reaches accepting state

– Might hit dead end
– Might run forever

Time Complexity
• TM(n) = Max { t(x) | x ∈ L |x| = n }

– Where |x| is length of string x

CS 451 S’01–13–NP-complete.ppt

P and NP
Language L is in P

• There is some deterministic TM M
– L(M) = L
– TM(n) = p(n) for some polynomial function p

Language L is in NP
• There is some nondeterministic TM M

– L(M) = L
– TM(n) = p(n) for some polynomial function p

• Any problem that can be solved by intelligent guessing

CS 451 S’01–14–NP-complete.ppt

Example: Boolean Satisfiability
Problem

• Variables: x1, ..., xk
• Literal: either xi or ¬ xi
• Clause: Set of literals
• Formula: Set of clauses
• Example: {x3,¬ x3} {x1,x2 } { ¬ x2,x3 } { x1,¬ x3 }

– Denotes Boolean formula x3∨¬ x3 ∧ x1∨x2 ∧ ¬ x2∨x3 ∧ x1∨¬ x3

CS 451 S’01–15–NP-complete.ppt

Encoding Boolean Formula
Represent each clause as string of 2k 0’s and 1’s

• 1 bit for each possible literal
• First bit: variable, Second bit: Negation of variable
• {x3,¬ x3}: 000011 {x1,x2 }: 101000
• {¬ x2,x3 }: 000110 {x1,¬ x3 }: 100001

Represent formula as clause strings separated by ‘$’
• 000011$101000$000110$100001

CS 451 S’01–16–NP-complete.ppt

SAT is NP
Claim

• There is a NDTM M such that L(M) = encodings of all satisfiable
Boolean formulas

Algorithm
• Phase 1: Determine k and generate some string {01,10}

– Append to end of formula
– This will be a guess at satisfying assignment
– E.g., 000011$101000$000110$100001$100110

• Phase 2: Check each clause for matching 1
– E.g., 000011$101000$000110$100001$100110

CS 451 S’01–17–NP-complete.ppt

SAT is NP-complete
Cook’s Theorem

• Can generate Boolean formula that checks whether NDTM accepts
string in polynomial time

Translation Procedure
• Given

– NDTM M
– Polynomial function p
– Input string x

• Generate formula F
– F is satisfiable iff M accepts x in time p(|x|)

• Size of F is polynomial in |x|
• Procedure generates F in (deterministic) time polynomial in |x|

Translation

M
x
p

F

CS 451 S’01–18–NP-complete.ppt

Construction
Parameters

• |x| = n
• m states
• v tape symbols (including B)

Formula Variables
• Q[i,k] 0 = i = p(n), 0 = k = m-1

– At time i, M is in state k
• H[i,j] 0 = i = p(n), -p(n) = j = p(n)

– At time i, tape head is over square j
• S[i,j,k] 0 = i = p(n), -p(n) = j = p(n), 1 = k = v

– At time i, tape square j holds symbol k
Key Observation

• For bounded computation, can only visit bounded number of
squares

CS 451 S’01–19–NP-complete.ppt

Clause Groups
• Formula clauses divided into “clause groups”

Uniqueness
• At each time i, M is in exactly one state
• At each time i, tape head over exactly one square
• At each time i, each square j contains exactly one symbol

Initialization
• At time 0, tape encodes input x, head in position 0, controller in

state 0
Accepting

• At some time i, state = m-1
Legal Computation

• Tape/Head/Controller configuration at each time i+1 follows from
that at time i according to some legal action

CS 451 S’01–20–NP-complete.ppt

Implications of Cook’s Theorem
Suppose There Were an Efficient Algorithm for
Boolean Satisfiability
• Then could take any problem in NP, convert it to Boolean formula

and solve it quickly!
• Many “hard” problems would suddenly be easy

Big Question P =? NP
• Formulated in 1971
• Still not solved
• Most believe not

CS 451 S’01–21–NP-complete.ppt

Complements of Problems
Language Complement

• Define ~L = { x | x ∉ L}
• E.g., ~SAT

– Malformed formulas (easy to detect)
– Unsatisfiable formulas

P Closed Under Complementation
• If L is in P, then so is ~L

– Run TM for L on input x for p(|x|) steps
» Has unique computation sequence

– If haven’t reached accepting state by then, then x ∉ L

CS 451 S’01–22–NP-complete.ppt

NP vs. co-NP (cont.)
Is NP = co-NP?

• Having NDTM for ~L doesn’t help for recognizing L
– Would have to check all computation sequences of length = p(|x|).
– Could have exponentially many sequences

Proper Terminology
• Generally want algorithm that can terminate with “yes” or “no”

answer to decision problem
• If underlying problem (or its complement) is NP, then full decision

problem is “NP-Hard”

CS 451 S’01–23–NP-complete.ppt

Showing Problems NP-Complete
To show Problem X is NP-complete
1. Show X is in NP

• Can be solved by “guess and check”
• Generally easy part

2. Show known NP-complete problem Y can be
reduced to X
• Devise translation procedure
• Given arbitrary instance y of Y, can generate problem x in X such

that y ∈ LY iff x ∈ LX
– Lx: set of all strings x for which decision problem answer is “yes”

• Size of x must be polynomial in y, and must be generated by
(deterministic) polynomial algorithm.

