
Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

Binary Decision Diagrams
and

Symbolic Model Checking

Binary Decision DiagramsBinary Decision Diagrams
andand

Symbolic Model CheckingSymbolic Model Checking

http://www.cs.cmu.edu/~bryant

Randy Bryant CMU
Ed Clarke CMU
Ken McMillan Cadence
Allen Emerson U Texas

– 2 –

Binary Decision DiagramsBinary Decision Diagrams

Restricted Form of Branching ProgramRestricted Form of Branching Program
� Graph representation of Boolean function
� Canonical form
� Simple algorithms to construct & manipulate

Application NicheApplication Niche
� Problems expressed as Quantified Boolean Formulas
� A lot of interesting problems are in PSPACE

Symbolic Model CheckingSymbolic Model Checking
� Prove properties about large-scale, finite-state system
� Successfully used to verify hardware systems

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 3 –

Boolean Function as LanguageBoolean Function as Language

Truth Table Language

� View n-variable Boolean function as language ⊆ {0,1}n

� Reduced DFA is canonical representation

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

DFA

{ 011,
101,
111 }

0 1

1
0,1

1

– 4 –

From DFA to OBDDFrom DFA to OBDD

Canonical representation of Boolean functionCanonical representation of Boolean function
	 Two functions equivalent if and only if graphs isomorphic

 Desirable property: simplest form is canonical.

0 1

1
0,1

1

x1

x2 x2

x3

1

x1

x2

x3

1

x1

x2

x3

10

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 5 –

Representing Circuit FunctionsRepresenting Circuit Functions

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

FunctionsFunctions
� All outputs of 4-bit adder
� Functions of data inputs

A

B

Cout

S
A
D
D

Shared RepresentationShared Representation

 Graph with multiple roots
� 31 nodes for 4-bit adder
� 571 nodes for 64-bit adder

☛ Linear growth

– 6 –

Effect of Variable OrderingEffect of Variable Ordering

Good Ordering Bad Ordering

Linear Growth

0

b3

a3

b2

a2

1

b1

a1

Exponential Growth

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

)()()(332211 bababa ∧∨∧∨∧

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 7 –

Sample Function ClassesSample Function Classes

Function Class Best Worst Ordering Sensitivity

ALU (Add/Sub) linear exponential High

Symmetric linear quadratic None

Multiplication exponential exponential Low

General ExperienceGeneral Experience
� Many tasks have reasonable OBDD representations
� Algorithms remain practical for up to 500,000 node OBDDs
� Heuristic ordering methods generally satisfactory

– 8 –

Symbolic Manipulation with OBDDsSymbolic Manipulation with OBDDs

StrategyStrategy
� Represent data as set of OBDDs

� Identical variable orderings
� Express solution method as sequence of symbolic

operations
� Sequence of constructor & query operations
� Similar style to on-line algorithm

� Implement each operation by OBDD manipulation
� Do all the work in the constructor operations

Key Algorithmic PropertiesKey Algorithmic Properties
� Arguments are OBDDs with identical variable orderings
� Result is OBDD with same ordering
� Each step polynomial complexity

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 9 –

Arguments Arguments II, , TT, , EE
� Functions over variables X
� Represented as OBDDs

ResultResult
� OBDD representing

composite function
 (I ∧T) ∨ (¬I ∧ E)

MUX
1

0

I → T, E

X

I

T

E

If-Then-Else OperationIf-Then-Else Operation

ConceptConcept
! Basic technique for building OBDD from logic network or

formula.

– 10 –

0 1

d

c

a

B3 B4

B2

B5

B1

Argument I

1

Argument T Argument E

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive Calls

b

0

d

1

c

a

A4 A5

A3

A2

A6

A1

If-Then-Else Execution ExampleIf-Then-Else Execution Example

OptimizationsOptimizations
" Dynamic programming
Early termination rules

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 11 –

0 1

d

c

b

11

c

a

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive Calls Without Reduction With Reduction

C2

C4

C5

C3

C6

C1 0

d

c

b

1

a

If-Then-Else Result GenerationIf-Then-Else Result Generation

$ Recursive calling structure implicitly defines unreduced BDD
% Apply reduction rules bottom-up as return from recursive calls

– 12 –

Restriction OperationRestriction Operation

ConceptConcept
& Effect of setting function argument xi to constant k (0 or 1).
' Also called Cofactor operation (UCB)

k F
xi –1

xi +1

xn

x1

F [xi =k]

Fx equivalent to F [x = 1]

Fx equivalent to F [x = 0]

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 13 –

Argument F

Restriction Execution ExampleRestriction Execution Example

0

a

b

c

d

1 0

a

c

d

1

Restriction F[b=1]

0

c

d

1

Reduced Result

– 14 –

And(F, G)

X
F

G MUX
1

0

F → G, 0

X

F

G

0

X
F

G MUX
1

0

F → 1, G

X

F

G

1

Or(F, G)

If-Then-Else(F, G, 0)

If-Then-Else(F, 1, G)

Derived Algebraic OperationsDerived Algebraic Operations
(Other operations can be expressed in terms of If-Then-Else

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 15 –

Generating OBDD from NetworkGenerating OBDD from Network

Network Evaluation

Task: Represent output functions of gate network as OBDDs.

A

B

C

T1

T2

Out

Resulting Graphs

A B C
T1 T2

Out

0 1

a

0 1

c

0 1

b

0 1

b

a

0 1

c

b

c

b

0 1

b

a

A A ←← new_new_varvar ("a");("a");
BB ←← new_new_varvar ("b");("b");
C C ←← new_new_varvar ("c");("c");
T1 T1 ←← And (A, 0, B);And (A, 0, B);
T2 T2 ←← And (B, C);And (B, C);
OutOut ←← Or (T1, T2);Or (T1, T2);

– 16 –

G F
xi –1

xi +1

xn

x1

x1

xn
F [xi =G]

x1

xn
xi –1

xi +1

xn

x1

xi –1

xi +1

xn

x1

1 F

0 F

MUX
1

0

G

Functional CompositionFunctional Composition

) Create new function by composing functions F and G.
* Useful for composing hierarchical modules.

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 17 –

xi –1

xi +1

xn

x1

F∃ ∃xi F

1 F

0 F

xi –1

xi +1

xn

x1

xi –1

xi +1

xn

x1

Variable QuantificationVariable Quantification

+ Eliminate dependency on some argument through
quantification

, Combine with AND for universal quantification.

– 18 –

Finite State System AnalysisFinite State System Analysis

Systems Represented as Finite State MachinesSystems Represented as Finite State Machines
- Sequential circuits
. Communication protocols
/ Synchronization programs

Analysis TasksAnalysis Tasks
0 State reachability
1 State machine comparison
2 Temporal logic model checking

Traditional Methods Impractical for Large MachinesTraditional Methods Impractical for Large Machines
3 Polynomial in number of states
4 Number of states exponential in number of state variables.
5 Example: single 32-bit register has 4,294,967,296 states!

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 19 –

Temporal Logic Model CheckingTemporal Logic Model Checking

Verify Reactive SystemsVerify Reactive Systems
6 Construct state machine representation of reactive system

7 Nondeterminism expresses range of possible behaviors
8 “Product” of component state machines

9 Express desired behavior as formula in temporal logic
: Determine whether or not property holds

Traffic Light
Controller

Design

Traffic Light
Controller

Design

“It is never possible
to have a green
light for both N-S
and E-W.”

Model
Checker

True

False
+ Counterexample

– 20 –

A
0 /1

Set Operations

A

B

Union
A

B

Intersection

Characteristic FunctionsCharacteristic Functions

ConceptConcept
; A ⊆ {0,1}n

< Set of bit vectors of length n
= Represent set A as Boolean

function A of n variables
> X ∈ A if and only if A(X) = 1

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 21 –

Nondeterministic FSM Symbolic Representation

o1,o2 encoded
old state

n1, n2 encoded
new state

00

10

01

11 o2

o1

1

n2

0

n1

o2

Symbolic FSM RepresentationSymbolic FSM Representation

? Represent set of transitions as function δ(Old, New)
@ Yields 1 if can have transition from state Old to state New

A Represent as Boolean function
B Over variables encoding states

– 22 –

Reachability AnalysisReachability Analysis

Rstate 0/1δ
old state

new state
0/1

TaskTask
C Compute set of states reachable from initial state Q0
D Represent as Boolean function R(S)
E Never enumerate states explicitly

Given Compute

Initial
R0

=

Q0

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 23 –

R0

00

Breadth-First Reachability AnalysisBreadth-First Reachability Analysis

F Ri – set of states that can be reached in i transitions
G Reach fixed point when Rn = Rn+1

H Guaranteed since finite state

00

10

01

11

R1R0

00 01

R2R1R0

00 01 10

R3R2R1R0

00 01 10

– 24 –

Iterative ComputationIterative Computation

I Ri +1 – set of states that can be reached i +1 transitions
J Either in Ri
K or single transition away from some element of Ri

Ri

δ

Ri

∃

Ri +1

old

new

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 25 –

Symbolic FSM Analysis ExampleSymbolic FSM Analysis Example
L K. McMillan, E. Clarke (CMU) J. Schwalbe (Encore Computer)

EncoreEncore GigamaxGigamax Cache SystemCache System
M Distributed memory multiprocessor
N Cache system to improve access time
O Complex hardware and synchronization protocol.

VerificationVerification
P Create “ simplified” finite state model of system (109 states!)
Q Verify properties about set of reachable states

Bug DetectedBug Detected
R Sequence of 13 bus events leading to deadlock
S With random simulations, would require ≈2 years to generate

failing case.
T In real system, would yield MTBF < 1 day.

– 26 –

System Modeling ExampleSystem Modeling Example

Gigamax Memory
System

Simplifying Simplifying
AbstractionsAbstractions

U Single word cache
V Single bit/word
W Abstract other

clusters
X Imprecise timing

Interface
Cluster #2

Abstraction
Cluster #3

Abstraction

Interface

Mem.
Cache

Control.
Cache

Control.

Global Bus

Cluster #1 Bus

Proc. Proc.

Arbitrary reads & writes

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 27 –

Commercial Applications of
Symbolic Model Checking
Commercial Applications of
Symbolic Model Checking
Several Commercial ToolsSeveral Commercial Tools

Y Difficult training and customer support

Most Large Companies Have InMost Large Companies Have In--House VersionsHouse Versions
Z IBM, Lucent, Intel, Motorola, SGI, Fujitsu, Siemens, …
[Many based on McMillan’s SMV program

Requires SophisticationRequires Sophistication
\ Beyond that of mainstream designers

– 28 –

Application ChallengeApplication Challenge

Cannot Apply Directly to Full Scale DesignCannot Apply Directly to Full Scale Design
] Verify smaller subsystems
^ Verify abstracted versions of full system

_ Must understand system & tool to do effectively

System
Size

Degree of Concurrency

Challenging
Systems to Design

Model checking
Capacity

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 29 –

Real World IssuesReal World Issues

Still Too VolatileStill Too Volatile
` Fail by running out of space
a Useless once exceed physical memory capacity

Ongoing Research to Improve Memory PerformanceOngoing Research to Improve Memory Performance
b Dynamic variable ordering
c Exploiting modularity of system model

d Partitioned transition relations
e Exploiting parallelism

f Map onto multiple machines
g Difficult program for parallel computation

» Dynamic, irregular data structures

– 30 –

Dynamic Variable ReorderingDynamic Variable Reordering

h Richard Rudell, Synopsys

Periodically Attempt to Improve Ordering for All BDDsPeriodically Attempt to Improve Ordering for All BDDs
i Part of garbage collection
j Move each variable through ordering to find its best location

Has Proved Very SuccessfulHas Proved Very Successful
k Time consuming but effective
l Especially for sequential circuit analysis

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 31 –

a3

b2 b2

a3

a2

a3

b1

b2

0

b3

b1

1

b2

a3

a2

a1

a3

b2

b3

b2

a3

a2

a3

b2

0

b1

b3

1

b2

a3

a2

a1

a2

a3

b1

b2

0

b3

b2

a3

1

b1

a2

a1

a3

b2

0

b3

b2

a3

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

• • •
a3

b2

0

b3

b2

a3

a2

1

a1

b1

Best
Choices

Dynamic Reordering By SiftingDynamic Reordering By Sifting

m Choose candidate variable
n Try all positions in variable ordering

o Repeatedly swap with adjacent variable
p Move to best position found

– 32 –

b1 b1

b2b2 b2b2

e f g h

i j
b1 b1

b2

b1

b2

b1

e f

g h i j

Swapping Adjacent VariablesSwapping Adjacent Variables

Localized EffectLocalized Effect
q Add / delete / alter only nodes labeled by swapping variables
r Do not change any incoming pointers

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 33 –

Tuning of BDD PackagesTuning of BDD Packages

Cooperative EffortCooperative Effort
s Bwolen Yang, in cooperation with researchers from

Colorado, Synopsys, CMU, and T.U. Eindhoven
t Measure & improve performance of BDDs for symbolic

model checking

MethodologyMethodology
u Generated set of benchmark traces
v Run 6 different packages on same machine
w Compare results and share findings

x Cooperative competition

– 34 –

Effect of OptimizationsEffect of Optimizations

Compare preCompare pre-- vs. postvs. post--optimized results for 96 runsoptimized results for 96 runs
y 6 different BDD packages
z 16 benchmark traces each
{ Limit each run to maximum of 8 CPU hours and 900 MB
| Measure speedup = Told / Tnew or:

} New: Failed before but now succeeds
~ Fail: Fail both times
� Bad: Succeeded before, but now fails

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 35 –

Optimization Results SummaryOptimization Results Summary

Cumulative
Speedup Histogram

22

33

61

75 76 76

13

6
1

6

0

10

20

30

40

50

60

70

80

>1
00 >5 >1 >0

speedups

of

 c
as

es

>1
0

>2

>0
.9

5

ne
w

ba
d

fa
ile

d

– 36 –

What’s Good about OBDDsWhat’s Good about OBDDs

Powerful OperationsPowerful Operations
� Creating, manipulating, testing
� Each step polynomial complexity

� Graceful degradation

Generally Stay Small EnoughGenerally Stay Small Enough
� Especially for digital circuit applications
� Given good choice of variable ordering

Weak CompetitionWeak Competition
� No other method comes close in overall strength
� Especially with quantification operations

Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 37 –

Thoughts on Algorithms ResearchThoughts on Algorithms Research

Need to be Willing to Attack Intractable ProblemsNeed to be Willing to Attack Intractable Problems
� Many real-world problems NP-hard
� No approximations for verification

Who Works on These?Who Works on These?
� Mostly people in application domain

� Most work on BDDs in computer-aided design conferences
� Not by people with greatest talent in algorithms

� No papers in STOC/FOCS/SODA
� Probably many ways they could improve things

� Fundamental dilemma
� Can only make weak formal statements about efficiency
� Utility demonstrated empirically

