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Binary Decision DiagramsBinary Decision Diagrams

Restricted Form of Branching ProgramRestricted Form of Branching Program
� Graph representation of Boolean function
� Canonical form
� Simple algorithms to construct & manipulate

Application NicheApplication Niche
� Problems expressed as Quantified Boolean Formulas
� A lot of interesting problems are in PSPACE

Symbolic Model CheckingSymbolic Model Checking
� Prove properties about large-scale, finite-state system
� Successfully used to verify hardware systems
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Boolean Function as LanguageBoolean Function as Language

Truth Table Language

� View n-variable Boolean function as language ⊆ {0,1}n

� Reduced DFA is canonical representation
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From DFA to OBDDFrom DFA to OBDD

Canonical representation of Boolean functionCanonical representation of Boolean function
	 Two functions equivalent if and only if graphs isomorphic

 Desirable property: simplest form is canonical.
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Representing Circuit FunctionsRepresenting Circuit Functions
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FunctionsFunctions
� All outputs of 4-bit adder
� Functions of data inputs
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Shared RepresentationShared Representation

 Graph with multiple roots
� 31 nodes for 4-bit adder
� 571 nodes for 64-bit adder

☛ Linear growth
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Effect of Variable OrderingEffect of Variable Ordering

Good Ordering Bad Ordering

Linear Growth
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Sample Function ClassesSample Function Classes

Function Class Best Worst Ordering Sensitivity

ALU (Add/Sub) linear exponential High

Symmetric linear quadratic None

Multiplication exponential exponential Low

General ExperienceGeneral Experience
� Many tasks have reasonable OBDD representations
� Algorithms remain practical for up to 500,000 node OBDDs
� Heuristic ordering methods generally satisfactory
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Symbolic Manipulation with OBDDsSymbolic Manipulation with OBDDs

StrategyStrategy
� Represent data as set of OBDDs

� Identical variable orderings
� Express solution method as sequence of symbolic 

operations
� Sequence of constructor & query operations
� Similar style to on-line algorithm

� Implement each operation by OBDD manipulation
� Do all the work in the constructor operations

Key Algorithmic PropertiesKey Algorithmic Properties
� Arguments are OBDDs with identical variable orderings
� Result is OBDD with same ordering
� Each step polynomial complexity
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Arguments Arguments II, , TT, , EE
� Functions over variables X
� Represented as OBDDs

ResultResult
� OBDD representing 

composite function
 (I ∧T) ∨ (¬I ∧ E)

MUX
1

0

I  → T, E 

X

I  

T 

E 

If-Then-Else OperationIf-Then-Else Operation

ConceptConcept
! Basic technique for building OBDD from logic network or 

formula.

– 10 –

0 1

d

c

a

B3 B4

B2

B5

B1

Argument I

1

Argument T Argument E

A4,B3 A5,B4
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Recursive Calls
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If-Then-Else Execution ExampleIf-Then-Else Execution Example

OptimizationsOptimizations
" Dynamic programming
# Early termination rules
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Recursive Calls Without Reduction With Reduction
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If-Then-Else Result GenerationIf-Then-Else Result Generation

$ Recursive calling structure implicitly defines unreduced BDD
% Apply reduction rules bottom-up as return from recursive calls

– 12 –

Restriction OperationRestriction Operation

ConceptConcept
& Effect of setting function argument xi to constant k (0 or 1).
' Also called Cofactor operation (UCB)

k F 
xi –1

xi +1

xn 

x1

F [xi =k]

Fx equivalent to F [x = 1]

Fx equivalent to F [x = 0]
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Argument F

Restriction Execution ExampleRestriction Execution Example
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And(F, G)

X
F 

G MUX
1

0

F  → G, 0 

X

F 
 

G

0

X
F 

G MUX
1

0

F  → 1, G 

X

F 

G

1

Or(F, G)

If-Then-Else(F, G, 0)

If-Then-Else(F, 1, G)

Derived Algebraic OperationsDerived Algebraic Operations
( Other operations can be expressed in terms of If-Then-Else
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Generating OBDD from NetworkGenerating OBDD from Network

Network Evaluation

Task: Represent output functions of gate network as OBDDs.
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Resulting Graphs
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A A ←← new_new_varvar ("a");("a");
BB ←← new_new_varvar ("b");("b");
C C ←← new_new_varvar ("c");("c");
T1 T1 ←← And (A, 0, B);And (A, 0, B);
T2  T2  ←← And (B, C);And (B, C);
OutOut ←← Or (T1, T2);Or (T1, T2);
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G  F 
xi –1

xi +1

xn 

x1

x1

xn 
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x1

1 F 

0 F 

MUX
1

0

G 

Functional CompositionFunctional Composition

) Create new function by composing functions F and G.
* Useful for composing hierarchical modules.
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xi –1

xi +1
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F∃ ∃xi F
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Variable QuantificationVariable Quantification

+ Eliminate dependency on some argument through 
quantification

, Combine with AND for universal quantification.
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Finite State System AnalysisFinite State System Analysis

Systems Represented as Finite State MachinesSystems Represented as Finite State Machines
- Sequential circuits
. Communication protocols
/ Synchronization programs

Analysis TasksAnalysis Tasks
0 State reachability
1 State machine comparison
2 Temporal logic model checking

Traditional Methods Impractical for Large MachinesTraditional Methods Impractical for Large Machines
3 Polynomial in number of states
4 Number of states exponential in number of state variables.
5 Example: single 32-bit register has 4,294,967,296 states!
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Temporal Logic Model CheckingTemporal Logic Model Checking

Verify Reactive SystemsVerify Reactive Systems
6 Construct state machine representation of reactive system

7 Nondeterminism expresses range of possible behaviors
8 “Product” of component state machines

9 Express desired behavior as formula in temporal logic
: Determine whether or not property holds

Traffic Light
Controller

Design

Traffic Light
Controller

Design

“It is never possible 
to have a green 
light for both N-S 
and E-W.”

Model
Checker

True

False
+ Counterexample
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A
0 /1

Set Operations

A

B

Union
A

B

Intersection

Characteristic FunctionsCharacteristic Functions

ConceptConcept
; A ⊆ {0,1}n

< Set of bit vectors of length n
= Represent set A as Boolean 

function A of n variables
> X ∈ A if and only if A(X )  =  1



Symbolic Boolean Manipulation with OBDDs

Randal E. Bryant

– 21 –

Nondeterministic FSM Symbolic Representation

o1,o2 encoded
old state

n1, n2 encoded
new state

00

10

01

11 o2

o1

1

n2

0

n1

o2

Symbolic FSM RepresentationSymbolic FSM Representation

? Represent set of transitions as function δ(Old, New)
@ Yields 1 if can have transition from state Old to state New

A Represent as Boolean function
B Over variables encoding states
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Reachability AnalysisReachability Analysis

Rstate 0/1δ
old state

new state
0/1

TaskTask
C Compute set of states reachable from initial state Q0
D Represent as Boolean function R(S)
E Never enumerate states explicitly

Given Compute

Initial
R0

=

Q0
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R0

00

Breadth-First Reachability AnalysisBreadth-First Reachability Analysis

F Ri – set of states that can be reached in i transitions
G Reach fixed point when Rn = Rn+1

H Guaranteed since finite state
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R1R0
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Iterative ComputationIterative Computation

I Ri +1 – set of states that can be reached i +1 transitions
J Either in Ri
K or single transition away from some element of Ri

Ri

δ

Ri

∃

Ri +1

old

new
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Symbolic FSM Analysis ExampleSymbolic FSM Analysis Example
L K. McMillan, E. Clarke (CMU)   J. Schwalbe (Encore Computer)

EncoreEncore GigamaxGigamax Cache SystemCache System
M Distributed memory multiprocessor
N Cache system to improve access time
O Complex hardware and synchronization protocol.

VerificationVerification
P Create “ simplified”  finite state model of system (109 states!)
Q Verify properties about set of reachable states

Bug DetectedBug Detected
R Sequence of 13 bus events leading to deadlock
S With random simulations, would require ≈2 years to generate 

failing case.
T In real system, would yield MTBF < 1 day.
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System Modeling ExampleSystem Modeling Example

Gigamax Memory
System

Simplifying Simplifying 
AbstractionsAbstractions

U Single word cache
V Single bit/word
W Abstract other 

clusters
X Imprecise timing

Interface
Cluster #2

Abstraction
Cluster #3

Abstraction

Interface

Mem.
Cache

Control.
Cache

Control.

Global Bus

Cluster #1 Bus

Proc. Proc.

Arbitrary reads & writes
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Commercial Applications of 
Symbolic Model Checking
Commercial Applications of 
Symbolic Model Checking
Several Commercial ToolsSeveral Commercial Tools

Y Difficult training and customer support

Most Large Companies Have InMost Large Companies Have In--House VersionsHouse Versions
Z IBM, Lucent, Intel, Motorola, SGI, Fujitsu, Siemens, …
[ Many based on McMillan’s SMV program

Requires SophisticationRequires Sophistication
\ Beyond that of mainstream designers
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Application ChallengeApplication Challenge

Cannot Apply Directly to Full Scale DesignCannot Apply Directly to Full Scale Design
] Verify smaller subsystems
^ Verify abstracted versions of full system

_ Must understand system & tool to do effectively

System
Size

Degree of Concurrency

Challenging
Systems to Design

Model checking
Capacity
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Real World IssuesReal World Issues

Still Too VolatileStill Too Volatile
` Fail by running out of space
a Useless once exceed physical memory capacity

Ongoing Research to Improve Memory PerformanceOngoing Research to Improve Memory Performance
b Dynamic variable ordering
c Exploiting modularity of system model

d Partitioned transition relations
e Exploiting parallelism

f Map onto multiple machines
g Difficult program for parallel computation

» Dynamic, irregular data structures
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Dynamic Variable ReorderingDynamic Variable Reordering

h Richard Rudell, Synopsys

Periodically Attempt to Improve Ordering for All BDDsPeriodically Attempt to Improve Ordering for All BDDs
i Part of garbage collection
j Move each variable through ordering to find its best location

Has Proved Very SuccessfulHas Proved Very Successful
k Time consuming but effective
l Especially for sequential circuit analysis
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Best
Choices

Dynamic Reordering By SiftingDynamic Reordering By Sifting

m Choose candidate variable
n Try all positions in variable ordering

o Repeatedly swap with adjacent variable
p Move to best position found
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Swapping Adjacent VariablesSwapping Adjacent Variables

Localized EffectLocalized Effect
q Add / delete / alter only nodes labeled by swapping variables
r Do not change any incoming pointers
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Tuning of BDD PackagesTuning of BDD Packages

Cooperative EffortCooperative Effort
s Bwolen Yang, in cooperation with researchers from 

Colorado, Synopsys, CMU, and T.U. Eindhoven
t Measure & improve performance of BDDs for symbolic 

model checking

MethodologyMethodology
u Generated set of benchmark traces
v Run 6 different packages on same machine
w Compare results and share findings

x Cooperative competition
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Effect of OptimizationsEffect of Optimizations

Compare preCompare pre-- vs. postvs. post--optimized results for 96 runsoptimized results for 96 runs
y 6 different BDD packages
z 16 benchmark traces each
{ Limit each run to maximum of 8 CPU hours and 900 MB
| Measure speedup = Told / Tnew or:

} New: Failed before but now succeeds
~ Fail: Fail both times
� Bad: Succeeded before, but now fails
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Optimization Results SummaryOptimization Results Summary

Cumulative 
Speedup Histogram
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What’s Good about OBDDsWhat’s Good about OBDDs

Powerful OperationsPowerful Operations
� Creating, manipulating, testing
� Each step polynomial complexity

� Graceful degradation

Generally Stay Small EnoughGenerally Stay Small Enough
� Especially  for digital circuit applications
� Given good choice of variable ordering

Weak CompetitionWeak Competition
� No other method comes close in overall strength
� Especially with quantification operations
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Thoughts on Algorithms ResearchThoughts on Algorithms Research

Need to be Willing to Attack Intractable ProblemsNeed to be Willing to Attack Intractable Problems
� Many real-world problems NP-hard
� No approximations for verification

Who Works on These?Who Works on These?
� Mostly people in application domain

� Most work on BDDs in computer-aided design conferences
� Not by people with greatest talent in algorithms

� No papers in STOC/FOCS/SODA
� Probably many ways they could improve things

� Fundamental dilemma
� Can only make weak formal statements about efficiency
� Utility demonstrated empirically


