Lecture 2: Concrete Models and
Tight Upper and Lower Bounds

David Woodruff
Carnegie Mellon University

* Number of comparisons to sort an array

* Number of exchanges to sort an array

* Number of comparisons needed to find the largest and second-largest
elements in an array

 Number of probes into a graph needed to determine if the graph is
connected

* Look at models which specify exactly which operations may be
performed on the input, and what they cost
* E.g., performing a comparison, or swapping a pair of elements

* An upper bound of f(n) means the algorithm takes at most f(n) steps
on any input of size n

* A lower bound of g(n) means for any algorithm there exists an input
for which the algorithm takes at least g(n) steps on that input

* Definition: in the comparison model, we have an input consisting of n
items (typically in some initial order). An algorithm may compare two
items (asking is a; > a;?) at a cost of 1. Moving the items around is free.

* No other operations are allowed, such as using the items as indices,
XORing them, hashing, etc.

* Sorting: given an array a = [a4, ..., ap], the output is a permutation
m(a) = lar(1), ---» @n(n)] iN which the elements are in increasing order

* Theorem: Any deterministic comparison-based sorting algorithm must
perform at least Ig(n!) comparisons to sort n elements in the worst
case, i.e., for any sorting algorithm A and n = 2, there is an input | of
size n so that A makes > lg(n!) = Q(nlogn) comparisons to sort |I.

* Need to rule out any possible algorithm

* Proof is information-theoretic

* Proof: Suppose there is a problem with M possible outputs

* For sorting M = n! since for each possible output permutation 1, there is an
input for which the outputis t

* Further, suppose for each possible output to the problem, there is an
input for which that output is the only correct answer
* For sorting there are inputs for which 1 is the only correct answer

* Then there is a lower bound of g M

* Consider a set of inputs in one-to-one correspondence with the M possible
outputs. Algorithm needs to find out which of the M outputs is the right one
for a given input, and each comparison can be answered in a way that
removes at most half of the possible inputs remaining from consideration

* Information-theoretic: need Ig(n!) bits of information about the input
before we can correctly decide on the output

e lg(n!) =lg(n) +lglh—1) +1gln —2) + ...+ 1g(1) < nlgn
e lg(n!) =lg(n) +1gln—1) +1glh —2) + ...+ 1g(1) > (g) Ig (g) = Q(nlgn)

n

n
°n!E[(g) ,n"], sonlgn —nlge <lIg(n!) <nlgn
nlgn —1.443n < Ig(n!) < nlgn

* lIg(n!) = (nlgn) (1 —o(1))

e Suppose for simplicity n is a power of 2

* Binary insertion sort: using binary search to insert each new element, the
number of comparisonsis ., _, ,[lgk] < nlgn
may need to move items around a lot, but only counting comparisons

* Mergesort: merging two lists of n/2 elements requires at most n-1
comparisons
* Unrolling the recurrence, total number of comparisons is

(n—1)+2(§—1)+ ...+§(2—1)=nlgn —(n—1) <nlgn

How many comparisons are necessary and sufficient to find the maximum of n
elements in the comparison model?

Claim: n-1 comparisons are sufficient

Proof: scan from left to right, keep track of the largest element so far

For lower bounds, what does our earlier information-theoretic argument give?
* Only Q(logn), which is too weak

Also, we have to look at all elements, otherwise we may have not looked at the largest,
but that can be done with n/2 comparisons, also not tight

* Claim: n-1 comparisons are needed in the worst-case to find the maximum
of n elements

* Proof: suppose A is an algorithm which finds the maximum of n distinct
elements using fewer than n-1 comparisons

e Construct a graph G in which we join two elements by an edge if they are
compared by A

* G has at least 2 connected components C; and C,

* Suppose A outputs element u as the maximum, and u € Cy

* Add a large positive number to each elementin C,

* Does not change any of the comparisons made by A, so will still output u
e But now u is not the maximum, so A is incorrect

e Recap: upper and lower bounds match at n-1

* Argument different from information-theoretic bound for sorting

* |nstead,

e if algorithm makes too few comparisons on some input In and
outputs Out,

* find another input In” where the algorithm makes the same
comparisons and also outputs Out,

e but Out is not a correct output for In’

* If algorithm makes “too few” comparisons, fool it into giving an incorrect answer

* Any deterministic algorithm sorting 3 elements must perform at least 3
comparisons

* If <2 comparisons, some element not looked at and the algorithm is incorrect

* After first comparison, 3 elements are w, |, and z, the winner and loser of the
first comparison, as well as the uninvolved item

* If the second query is between w and z, say
* wis larger
* If the second query is between | and z, say
* | is smaller
* Algorithm needs one more comparison for correctness

* Goal: give an adversary answering comparisons so that (a) answers consistent with
some input In, and (b) answers make the algorithm perform “many” comparisons

* How many comparisons are necessary (lower bound) and sufficient
(upper bound) to find the first and second largest of n distinct
elements?

* Claim: n-1 comparisons are needed in the worst-case

* Proof: need to at least find the maximum

* Claim: 2n-3 comparisons are sufficient to find the first and second-
largest of n elements

* Proof: find the largest using n-1 comparisons, then find the largest of
the remainder using n-2 comparisons, so 2n-3 total

* Upper bound is 2n-3, and lower bound n-1, both are ®(n) but can we
get tight bounds?

* Claim: n + lgn — 2 comparisons are sufficient to find the first and
second-largest of n elements

* Proof: find the maximum element using n-1 comparisons by grouping
elements into pairs, finding the maximum in each pair, and recursing

) 7
Round 1 (4 /l \ e \ /
Round 2 \ / \ /
Round 3 \ /

 What can we say about the second maximum?
* Must have been directly compared to the maximum and lost, so lg(n)-1
additional comparisons suffice. Kislitsyn (1964) shows this is optimal

* Consider a shelf containing n unordered books to be arranged
alphabetically. How many swaps to we need to order them?

* Definition: In the exchange model, an input consists of n items, and
the only operation allowed on the items is to swap a pair of them at a
cost of 1 step.

* All other work is free, e.g., the items can be examined and compared

* How many exchanges are necessary and sufficient?

* Claim: n-1 exchanges is sufficient
* Proof: here’s an algorithm:
* In first step, swap the smallest item with the item in the first location

* In second step, swap the second smallest item with the item in the
second location

* In k-th step, swap the k-th smallest item with the item in the k-th
location

* If no swap is necessary, just skip a given step
* No swap ever undoes our previous work
e At the end, the last item must already be in the correct location

* Claim: n-1 exchanges are necessary in the worst case

* Proof: create a directed graph in which the edge (i,j) means the book
in location i must end up in location j

X

Figure 1: Graph for input [f c d e b a g]

* Graph is a set of cycles
* Indegree and Outdegree of each node is 1

 What is the effect of exchanging any two elements in the same cycle?
 Suppose we have edges (iy,j;) and (i,,j,) and swap elements in locations i; and i,

* This replaces these edges with (i,,j;) and (iy, j,) since now the item in position i,
need to go to j; and item in position i; need to go to j,

* Since i; and i, in the same cycle, now we get two disjoint cycles
J1
14 15

J2

* What is the effect of exchanging any two elements in different cycles?

* If we swap elements i; and 1, in different cycles, similar argument
shows this merges two cycles into one cycle

J2

* What is the effect of exchanging any two elements in the same cycle?
* Get two disjoint cycles

* What is the effect of exchanging any two elements in different cycles?
* Merges two cycles into one cycle

« How many cycles are in the final sorted array?
* ncycles

» Suppose we begin with an array [n, 1, 2, ..., n-1] with one big cycle

* Each step increases the number of cycles by at most 1, so need n-1
steps

* Let G be the adjacency matrix of an n-node graph
* GJ[i,j] = 1if thereis an edge between i and j, else GJ[i,j] =0

* In 1 step, we can query any element of G. All other computation is free
* How many queries do we need to tell if G is connected?

* Claim: n(n-1)/2 queries suffice

* Proof: Just query every pair {i,j} to learn G, then check if G is connected

e What about lower bounds?

* Theorem: n(n-1)/2 queries are necessary to determine connectivity

* Proof: adversary strategy: given a query GJ[u,v], answer 0 unless that
would cause the graph to become disconnected

* Invariant: for any unasked pair {u,v}, the graph revealed so far has no
path fromutov

* Reason: consider the last edge {u’,v’'} revealed on that path. Could have
answered 0 and kept same connectivity by having edge {u,v} be present

* Theorem: n(n-1)/2 queries are necessary to determine connectivity

* Proof: adversary strategy: given a query GJ[u,v], answer 0 unless that
would cause the graph to become disconnected

* Invariant: for any unasked pair {u,v}, the graph revealed so far has no
path fromutov

e Suppose there is some unasked pair {u,v} by the algorithm
* If algorithm says “connected”, we place all Os on unasked pairs
* If algorithm says “disconnected”, we place all 1s on unasked pairs

* So algorithm needs to query every pair

