
15-451/651: Design & Analysis of Algorithms
Lecture #25: Graph Sketching

In the last lecture we saw how to find a non-zero item of an arbitrary non-zero vector x
presented as a stream of insertions and deletions to its coordinates, using O(log2 n) bits of
space. More precisely, we assumed all the entries of x were integers in the range {−nC ,−nC+
1,−nC + 2, . . . , nC − 1, nC} at all times in the stream, and thus representable with O(log n)
bits, and in this case we came up with an algorithm which had the following guarantees.

With probability O(log n)/n, the algorithm is incorrect and may output something arbi-
trary. With the remaining 1−O(log n)/n probability,

• if x = 0n, we output FAIL,

• otherwise if x 6= 0n, with probability at least 4/5, we output an entry i for which
xi 6= 0, and with the remaining probability we output FAIL.

Recall from the previous lecture that the O(log n)/n probability of being incorrect was
somewhat arbitrary, and could be adjusted just by replacing the prime p in the 1-Sparse-
Finder algorithm with a larger prime. That is, we chose p to be a prime between n2 and
2n2, but if we instead choose a prime p between n3 and 2n3, then the probability of being
incorrect is just O(log n)/n2. We will need this smaller probability for today’s lecture. Let
us refer to the above algorithm as Non-Zero Finder.

1 Graph Sketching

Our main motivation will be to process a graph stream. We now would like to find a
distribution on “wide-fat” matrices S ∈ Rk×n for a small number k of rows, so that we can
compress a graph, represented as a matrix. For example, an unweighted undirected graph G
on n nodes may be represented as an n× n adjacency matrix AG where (AG)i,j = 1 if {i, j}
is an edge, and (AG)i,j = 0 otherwise. Note that AG is a symmetric matrix. For example,
one could ask the question - is there a distribution on matrices S with k = poly(log n) for
which given S · AG, one can output a spanning forest of G? We will consider this question
again later in the lecture.

Before getting into the motivation for graph sketching, we first consider a stream of
insertions of edges e1, . . . , em of a graph G. Suppose we would like to output a spanning
tree of G. We could trivially store all the edges of G, but we may have m = Θ(n2), and
this would require Ω(n2) bits of memory. Instead, can we accomplish certain tasks with only
n · poly(log n) bits of memory, which would be much more efficient?

For example, consider the task of ouputting a spanning tree of a given connected, un-
weighted graph G. Here is a natural algorithm SpanningTree: for each edge e you see in
the stream, store it if and only if it does not form a cycle with the edges you have already
stored. By definition of the algorithm, the set E ′ of edges that you store in the stream does
not form a cycle, and hence, you store at most n− 1 edges, and so O(n log n) bits of space,
since for each edge you need to store the identities of its endpoints.

1



Lemma 1 Algorithm SpanningTree returns a spanning tree given that G is connected.

Proof: Suppose for the sake of contradiction, that the graph with edgeset E ′ were discon-
nected, and consider a cut (S, V \ S) where S and V \ S are non-empty, and there are no
edges in E ′ from S to V \ S. Since G is connected, there is an edge e = {u, v} from S to
V \ S in G. When processing edge e in the stream, there cannot already be a path from u
to v in E ′, since such a path would contain an edge from S to V \ S, and by assumption
E ′ has no edges from S to V \ S. Consequently, e does not form a cycle with the edges E ′

that have already been stored, and so e would have been included in E ′ by the streaming
algorithm. �

While the above lemma works on streams with insertions to its edges, it does not work
if the stream is allowed to have both insertions and deletions to its edges. Outputting a
spanning tree in this case is now much more involved, and we will use sketching to solve this
problem.

The usual sketching motivation for vectors also applies to graphs. Given a stream of
insertions or deletions to the edges of a graph, we can, for example, store a sketch S · AG

of the adjacency matrix AG, where S is our sketching matrix. The memory required of the
streaming algorithm is (the number of rows of S) ·n log n bits to store S · AG, and one also
needs to store S, which is (the number of rows of S) ·n log n. Here we assume the entries of
S can be represented with O(log n) bits. So SAG and S are both (the number of rows of S)
×n matrices, and we store O(log n) bits to represent each of their entries.

So if we wanted to find a spanning tree of a connected unweighted graph in a stream of
insertions and deletions to its edges, we could store S ·AG and S. The goal would be to find
a distribution on matrices S with a small number of rows. As we will see, we will be able to
find such a distribution on matrices S with O(log2 n) rows!

1.1 Parallel Computing

Before doing so, we mention an application to parallel computing. Suppose there are a
constant number of servers, each holding a disjoint subset of the edges of a graph. More
precisely, suppose there are k = O(1) servers, S1, . . . , Sk, holding E1, . . . , Ek, respectively,
and E = ∪iEi on a common vertex set V . That is, the underlying graph is G = (V,E).
Let Gi = (V,Ei). Suppose we would like to compute a spanning tree of G with low com-
munication. Then the i-th server could compute S · AGi , and transmit this to a centralized
coordinator, for each i = 1, 2, . . . , k. The centralized server could then use linearity to com-
pute

∑k
i=1 S · AGi = S ·

∑k
i=1AGi = SAG. This is just the sketch of the graph AG! Notice

that it was important that the sketching matrix S be linear, so that the sum of the sketches
is the sketch of the sum. If from S ·AG one can output a spanning tree of G, then this gives
a distributed algorithm for computing a spanning tree.

Notice that the communication is just k times the size of any individual sketch, which is
(the number of rows of S) ·n log n, and thus the total communication, summed up over all
servers is O(k)· (the number of rows of S) ·n log n. Thus, if we have a sketch with a small

2



number of rows, then we also reduce the amount of communication in parallel computing
applications.

2 Computing a Spanning Tree with Insertions and Dele-

tions

To present the algorithm, we first need to recall a classic algorithm for computing a spanning
tree, namely, Boruvka’s algorithm. We will need to slightly modify the algorithm for our
setting, so present a self-contained analysis here.

Assume we have an undirected input graph which is unweighted and connected.

Modified Boruvka’s Spanning Tree Algorithm

1. Initialize edgeset E ′ to ∅

2. Create a list L of n groups of vertices, each initialized to a single vertex

3. While L has more than 1 group,

• For each group G, include in E ′ an arbitrary edge e from a vertex in G to a vertex
not in G

• Merge groups connected by an edge in the previous step

4. Find an output a spanning tree whose edges are within the set E ′.

The slides give a good illustration of running Modified Boruvka’s Spanning Tree Algorithm
on an example graph, and so we refer you to the slides.

We now move on to the analysis.

Lemma 2 If there are at least 2 groups in an iteration, then each group has an outgoing
edge.

Proof: A group is just a list of vertices. If there were a group with no outgoing edge,
since there is at least one other group containing at least one vertex, the graph would be
disconnected, a contradiction. �

Lemma 3 If there are t groups at the start of an iteration, then there are at most t/2 groups
at the end of the iteration.

Proof: Consider a graph whose vertices are the groups G1, . . . , Gt at the start of the it-
eration, and where the edges correspond to the groups that we connect. From each group
we choose an arbitrary outgoing edge connecting it to another group; this is possible by
Lemma 2. By definition of the algorithm, the number of groups at the end of the iteration
is the number of connected components in this graph. Since each connected component

3



corresponds to merging at least two groups, the number of groups at the end of the iteration
is at most t/2. �

By Lemma 3, after at most log2 n iterations, there is only one group left. Notice that
the total number of edges included in the edgeset E ′ in Modified Boruvka’s Spanning Tree
Algorithm is at most n + n/2 + n/4 + · · ·+ 2 + 1 ≤ 2n.

Lemma 4 If V is the set of vertices of G, and E ′ is the edgeset output by Modified Boruvka’s
Spanning Tree Algorithm, then H = (V,E ′) is a connected graph.

Proof: The invariant that we maintain is that each group Gi in each iteration is connected
by the edges in our set E ′. Suppose this is true at the beginning of an iteration, and we
connect two groups Gi and Gj by an outgoing edge. Since each of Gi and Gj are individually
connected, and now connected by an edge, it follows that Gi∪Gj is connected by our edgeset
E ′, showing the invariant continues to hold at the end of the iteration. Since in the final
iteration we have a single group, it follows that this group is connected by our edgeset E ′.
�

By Lemma 4, the graph H is connected, and thus, it contains a spanning tree. A spanning
tree on the vertex set V using a subset of edges of E ′ is also a spanning tree on the vertex
set V using a subset of edges of E, and thus we output a spanning tree of G, as desired.

We now show how to use the Modified Boruvka’s Spanning Tree Algorithm in the context
of graph sketching. Let the n nodes be {1, 2, 3, . . . , n}. For each node ai, we introduce a
vector ai of length

(
n
2

)
which is indexed by node pairs:

• if {i, j} is an edge, ai[i, j] = 1 if j > i and ai[i, j] = −1 if j < i.

• if {i, j} is not an edge, then ai[i, j] = 0.

The key reason for representing the graph this way is the following lemma:

Lemma 5 For a subset S of nodes in G, Support(
∑

i∈S ai) = E(S, V \ S). Here Support(x)
denotes the set of non-zero elements of x. Also, E(S, V \ S) denotes the set of edges in G
from S to V \ S.

Proof: For an edge {i, j}, if i, j ∈ S the sum of the entries along the {i, j}-th column of∑
i∈S ai is 0, since we will have a 1 plus a −1, plus a bunch of 0s. If neither i nor j is in S,

the sum along the {i, j}-th column of
∑

i∈S ai will be 0. Finally, if exactly one of i or j is in
S, the sum along the {i, j}-th column will be 1 or −1, proving the lemma. �

Note that one way to store a1, . . . , an in the stream is that every time we see an insertion or
deletion to an edge {i, j}, we can simple update the {i, j}-th column of ai and aj accordingly
- if it is an edge insertion we put a 1 in the {i, j}-th column of ai if j > i, otherwise we put a
−1 in the {i, j}-th column of ai. Similarly, we put a 1 in the {i, j}-th column of aj if i > j,
otherwise we put a −1 in the {i, j}-th column of aj. Similarly, if it an edge deletion we put
a 0 in both the {i, j}-th column of ai and the {i, j}-th column of aj.

4



The main problem with this approach is that each ai is Θ(n2)-dimensional! So we have
n different ai, and this very näıve representation requires Θ(n3) bits of space. The natural
way around this is to sketch each ai!

Indeed, instead of storing each ai, let us store a sketch C · ai, for i = 1, . . . , n. Here ai
is thought of as an

(
n
2

)
-dimensional column vector, and C is k ×

(
n
2

)
for a small value of k,

i.e., C is a wide-fat matrix. Then, we will only need to store O(n · k · log n) bits, which if
k is small, will be a significant parameter reduction! In fact, C will exactly correspond to
our sketch for outputting a non-zero item of a non-zero vector, which has O(log n) rows and
thus C · ai for a given i can be stored using O(log2 n) bits of space.

It turns out, to run Modified Boruvka’s Spanning Tree Algorithm, we will need to store
not one sketch of each ai, but O(log n) sketches C1ai, . . . , CO(logn)ai of each ai, where
C1, . . . , CO(logn) are independent Non-Zero Finder sketches. For each i = 1, 2, . . . , n,
and for each j = 1, 2, . . . , O(log n), we store Cjai. Notice that we use the same Cj for each
ai. Sinc each Cjai can be represented with O(log2 n) bits of space, in total this gives us
O(n log3 n) bits of space, as we range over all i = 1, 2, . . . , n and j = 1, 2, . . . , O(log n).

A key observation is that the non-zero items of Cjai are exactly the edges adjacent to
i! Moreover, for a subset S of vertices,

∑
j∈S Cjai = Cj(

∑
i∈S ai), and by Lemma 5, the

non-zero entries of
∑

i∈S ai are exactly the outgoing edges of the group S of vertices! By the
guarantee of Non-Zero Finder, Cj will return such an outgoing edge. These are exactly
the ingredients needed by Modified Boruvka’s Spanning Tree Algorithm!

Here is the algorithm:

1. For each node j, use Ci · aj to get an edge incident on j.

2. For i = 2, 3, . . . , O(log n),

(a) To get an outgoing edge from a group G of vertices in iteration i, compute∑
j∈GCiaj = Ci(

∑
j∈G aj) and run the procedure associated with Cj to find an

outgoing edge e from G to V \ G. Include edge e ∈ E ′, where E ′ is the edgeset
being maintained in Modified Boruvka’s Spanning Tree Algorithm

3. As in Modified Boruvka’s Spanning Tree Algorithm, output a spanning tree among the
edges in E ′.

As mentioned above, the total space is O(n log3 n) bits, and the correctness follows almost
identically to the analysis we gave for Modified Boruvka’s Spanning Tree Algorithm. There is
one minor change though, which is that Non-Zero Finder does not always return a non-
zero element of the support of the vector which it is applied to. We said it could be incorrect
with probability O(log n)/n2, but since we only run it O(n log n) times, we can assume
every invocation is correct by a union bound. Even though it is correct, as mentioned with
probability up to 1/5, in some iteration i for some group G, Ci(

∑
j∈G aj) may just output

FAIL. We handle this as follows.
The expected number of groups G for which Ci(

∑
j∈G aj) outputs FAIL in any given

iteration is at most (1/5)t, where t is the number of groups G at the beginning of iteration i.

5



By a Markov bound, with probability at least 2/3, at most 3t/5 groups will not be connected
to another group. If this happens, then there are at least 2t/5 groups connected to another
group. To maximize the number of connected components remaining, these 2t/5 groups
could all pair up with each other, in which case they will form 2t/10 connected components.
Thus, after the iteration, there will be at most 3t/5 + 2t/10 = 4t/5 connected components
with probability at least 2/3. Since the sketches are independent across iterations, this means
that with probability 11/poly(n), after O(log n) iterations, there will be only one connected
component left. That is why we chose O(log n) sketches of each ai.

All in all, we get an O(n log3 n) space algorithm for outputting a spanning tree in a stream
with insertions and deletions to the edges! This was shown in a breakthrough paper of Ahn,
Guha, and McGregor in SODA 2012, “Analyzing Graph Structure via Linear Measurements”;
see the paper for more details.

6


