Lecture 1 and 2: Upper & Lower Bounds

* Linear time selection
* solving recurrences, linearity of expectation

* Tight lower bounds for sorting, max-finding, sorting-by-swaps
» adversary method, comparison-tree method

Write a program which takes as input a list of n distinct numbers ay, as, . .., a,, and
outputs the elements of ranks 1,2,4 = 22,8 = 23 21 ... 2% where 2* is the greatest
power of 2 that is at most n.

Your algorithm should have O(n) running time (deterministic worst-case or randomized
expected). Please include a comment at the start of your program explaining your

Lecture 1 and 2: Upper & Lower Bounds

* Linear time selection
* solving recurrences, linearity of expectation

* Tight lower bounds for sorting, max-finding, sorting-by-swaps
» adversary method, comparison-tree method

(b) You are given n unsorted distinct elements. Let k& = [n%?]. Circle the tightest
upper bound vou can give on the number of comparisons to output the elements
of ranks 1,2, ...k in that order. (Rank 1 = smallest.)

O(logn) o(n"") O(n"”logn) ©O(n) O(nlogn) O(n'?)

al0] < al1]

Lecture 2: Lower Bounds .= TR
< > <
a[0] < a[1] < a[2] a0] < al2] a[1] < a0] < a|2] a[1] < a2
a0 <alz]<alt] a2l <aldl<alt] alt]<aP] <alo] af2] <at] < afo

Theorem: Any deterministic comparison-based sorting algorithm must perform
lg(n!g comparisons to sort n elements in the worst case, I.e., for any sorting algorithm A and
n = 2, there is an input | of size n so that A makes > lg(n!) = (Q(nlogn) comparisons to sort I.

Proof: Suppose there is a problem with M possible outputs
* For sorting M = n! since for each output permutation m, there is an input with output m

Suppose for each possible output, there is an input for which that output is the only correct
answer

* For sorting there are inputs for which 1t is the only correct answer

Then there is a lower bound of IgM

* Consider a set of inputs in one-to-one correspondence with the M possible outputs.
Algorithm needs to find which of the M outputs is correct for a %iven input, and each
comparison can be answered in a way that removes at most half of the possible inputs

Lecture 3-4: Amortized Analysis & Union-Find

* Binary counter, maintaining array under inserts and deletes
e amortized analysis
* banker’s method and potential function (aka total money in bank)
* “when is the next expensive operation coming, save enough to pay for it”

) Consider a stack data structure that supports the following API:

top(): Return the top of the stack. (cost = 1)
push(x): Put x on top of the stack. (cost = 1)
multipop(k): Pop and discard the top k elements of the stack. (cost = k)

With a potential of ®(stack) = it is possible to prove the
following bounds. All blanks must contain numerical constants such that if any one of

them is made smaller the result will be false.
e amortized cost of top() <
e amortized cost of push(x) <

e amortized cost of multipop(k) <

Lecture 5: Hashing

h:U->{0, 1, 2, ..., M-1} is universal if for all x # vy,
1

PrnG) =h()] <

Theorem: If H is universal, then for any set S € U with [S| =N, forany x € §, if we
choose h at random from H, the expected number of collisions between x and other
elementsin Sis less than N/M.

e Ax mod 2 is universal

Definition: A hash function family H is k-universal if for every set of k distinct keys
X1, ..., Xk and every set of kvalues vy, ...,vix € {0,1,...,M — 1},
1

Prih(x,) = v4 AND h(xz) = v, AND ... AND h(x}) = vi] = —¢

Perfect Hashing: can use O(N) space to achieve constant worst-case lookup time to
store a set of N keys. Based on2-level hashing scheme

Lecture 6: Data Stream Mode|

e Stream of elements ay, ..., a;

e S; is the multiset of items at timet,so S, = 0, S; = {a;},S; = {ay, ..., ai},
count.(e) = {i € {1, 2, ..., t} such that a; = e}

* e € X is an e-heavy hitter at time t if count.(e) > €t

* Maintain 1/€ identities and counters. Every time we discard an
update, we decrement 1/€ counts, so an e-heavy hitter will survive

Lecture 6: Data Stream Model

* Heavy hitters with stream deletions

* Query “What is count(e)?”, should output est;(e) with:
Pr||est.(e) — count(e)| < €|S¢{|]] =1—-6

* Want space close to our previous O(1/ €) (log(X) + log t) bits

* leth:X¥ - {0,1,2, ..., 10/€} be a 2-universal hash function

* Maintain an array A[Q, 1, ..., k-1] to store non-negative integers
when update a; arrives:
if a, = (add, e) then A[h(e)] + +
else a, = (del,e), and A[h(e)] — —

* esty(e) = Al[h(e)]

Lecture /7: Fingerprinting

In the string-matching problem, we have
e Atext T of length m
* A pattern P of length n

Text: AABAACAADAABAABA
Pattern: AABA

AABA AABA

AAB%AC%A?%ABAABA

0 1 2 4 5 7 1011KK1B4K
Pattern Found at 1, 9 and 12

Goal: output all occurrences of the pattern P inside the text T

Karp-Rabin: h,(x) = x mod p for x € {0,1}", think of x as an integer

Create x’ by dropping the most significant bit of x, and appending a bit to the right

e E.g., if x=0011001, then x’ could be 0110010 or 0110011

Given h,(x) = z, can we compute h, (x') quickly?

Suppose Xy, is the lowest-order bit of x’, and xy,, is the highest order bit of x
X' =2(Xx — Xpp - 2°7) + xp’
Since hp(a +b) = (hp(a) + hp(b)) mod p, and hy,(2a) = Zhy(a) mod p,

h,(x") = (th(x) — Xpp - hp(2") + xl’b) mod p

Given hy,(x) and h,,(2™), this is just O(1) arithmetic operations mod p. O(m+n) total time.

Lecture 8: Dynamic Programming

* Store solutions to subproblems, avoid resolving repeatedly

* Top-down (via memorization), Bottom-up (via filling table)

 standard table DP: longest common subsequence, knapsack
* tree DP (for independent set), subset DP (for TSP)

Lecture 8: Dynamic Programming

(¢) Let P(n,d) be the number of properly parenthesized expressions of length n, where
the maximum depth of nesting is at most d. You will write a dynamic program to

compute this number.

Example: The string ()(}(){) has length 8 and depth 1, ()(())(()) has length 10 depth 2,

and ((J()((0(()))) has length 16 and depth 4.

{a) Fill in the blanks in the following recurrence for P(n,d) (where n > 0 and d > 0):

.

0

P(n,d) = «

\

2

if nis odd

ifn>0andd=0

ifn=0

otherwise

(b) The runtime to compute P(n, d) using dynamic programming is O(———).

Lecture 9: Shortest Paths

e SSSP : Dijkstra (for non-negative weights)

: Bellman-Ford (for negative weights, detects negative cycle)

e APSP : Floyd-Warshall
: Johnson’s algorithm (BF, make edge-lengths non-neg, n Dijkstras)

: Matrix Multiplication

Lecture 10-11: Network Flows

* s-t Flow Network: capacities on edges

e Ford-Fulkerson. Residual graph.

(a) What is the value of the maximum S-7" flow in the graph below?

S 1 A
2
4 4
BO— 0T

(b) Draw the residual graph that results after running the Ford-Fulkerson algorithm
to completion on the above graph. Label the edges with their residual capacities.
(Vertices shown below for your convenience).

S A
O o

B O OoT

Lecture 10-11: Network Flows

s-t Flow Network: capacities on edges

Ford-Fulkerson. Residual graph.

Max-flow Min-Cut theorem. Integer Max-flow if capacities are integers.

Solves Bipartite matching.

Poly-time rules: Edmonds-Karp fattest path, E-K shortest augmenting path.

Min-cost max-flow

Lecture 10-11: Network Flows

= =

In lecture we saw how to compute a maximum matching in a bipartite graph using a
maximum flow algorithm. Let’s adapt this idea to find a 2-factor in a bipartite graph
(or determine that no 2-factor exists).

(a) Think of a construction to convert any bipartite graph G into a flow network G’
such that G has a 2-factor if and only if G’ has a maximum flow that is “large
enough”. Tllustrate your construction on the graph below by adding two additional
vertices (s and t), and adding some edges. For each edge give it a direction. Label
each edge with a capacity.

Lecture 12: Game Theory 2l (=™,

matrix M

shooter L || (—1,1) | (1,-1)
R (1,-1) | (—1,1)

* Assume players have independent randomness
* Vr(p, @) = 2; Pr[row player plays i, column player plays j| - Rj; = %;; piqjRi;
* Ve(p,q) = Qi Pr[row player plays i, column player plays j] - Cj; = 2.1, Pi9;Ci;
* Whatis Vr(p, q) + Vc(p, q)?

* 0, since zero-sum game

If p=(.5,.5)and q=(.5,.5) what is VR?
VR =25-(-1)+.25-1+ 251+ .25 :(—-1)

If p=(.75, .25) and q = (.6, .4) what is Vg? Vg = —0.1

Von Neumann: Given a finite 2-player zero-sum game,
Ib = max min Vg (p, q) = min max Vg(p,q) = ub
P q q p

Lecture 13: Linear Programming

Variables: S, P, E
Objective: Maximize 2P + E subject to
Constraints: S+P+E =168
E > 56
S = 60
2S+E-3P > 150
P+E>T70
P=0

/////////

(56,26)

\
///////// %
NN

AHRTHHHIHH
AR ..,////////

W

.

]
,/,//////////////// DN
////////////////////// W

N ////// \

DA /

/////,

//// N ,////// I

186

108

56 70

Linear Programming

Lecture 13

Ry

7.
on

Start at vertex of the feasible region (polyhedron in high dimensions)
Look at cost of objective function at each neighbor

Move to neighbor of minimum cost

Always make progress, but could take exponential time (in high dimensions)

Lecture 14: Seidel’s Algorithm

* Order constraints randomly: a;, - x < b;,..,a;__ X <bj _5,¢1,C;

* Leave ¢4, C, at the end

([1 1 i *
Recursively find the optimum x* of a;, - x < by, ...,a; X <b;__

*

* Case 1:Ifq; - x
* O(1) time
* Case 2: If a;, - X™ > b;_, then we need to

< b;,, then X" is overall optimum

intersect the line a;, - X = b;, with each

other line aj; X = bi]. and solve a

1-dimensional problem in O(m) time

Lecture 15: Duality

P = max(2x; + 3z2) 4y) + 2y2 + 3y 3> 2
s.t. 4xq +8xg < 12 8y1 + Y2 + 2y3 > 3
2z + 12 <9 ylvy27y320

3x1 + 229 < 4

and we seek min(12y; + 3y + 4y3)
I1,T2 P 0

* Dual of the dual is the primal!

* Can we get better upper/lower bounds by looking at more
complicated combinations of the inequalities, not just linear
combinations?

Lecture 15: Duality

| means infeasible

P\D[I|O][U
I [V [X[V
O | X|v X
U | v | XX

O means feasible and bounded

U means unbounded

Check means possible
X means impossible

Lecture 16: NP-completeness

 P: (decision) problems solvable in poly-time
* NP: (dec.) probs with short “proofs” that can be verified in poly-time

* NP-complete: prob in NP, and every problem in NP reduces to it

e circuit-SAT, 3SAT, CLIQUE, IND-SET, Vertex Cover, Set Cover, 3-Coloring,
Hamilton Path, Partition

* to show hardness:
reduce the known NP-complete problem to unknown problem
“so the new problem is at least as hard as some NP-complete problem”

The students of 15-451/651 like forming clubs. Each club consists of exactly 3 distinct
members. Students may belong to multiple clubs (or may belong to none at all.) We
want to pick a subset of students to designate as “officers”, such that each club contains
at least one officer. A set S of students is good if every club intersects S.

E.g., if there is a student who belongs to every club, we can just designate her as officer,
and all clubs will contain an officer. If all clubs are disjoint, we need to pick one officer
per club.

The decision problem OFFICERS is: given the roster R of the class (with n students),
a list of clubs CY,...,C,, (each a subset of R of size 3), and an integer K > 0, does
there exist a good set of size K7

Show this problem is NP complete. (Hint: One way is to use VERTEX COVER.)

OFFICERS is in NP because a verifier can efficiently check a proposed solu-
tion as follows:

To prove that OFFICERS is NP-hard, we can reduce from

Q = to Q" =
Specifically, given an instance I of () we create an instance f(I) of ' as
follows:

Now we show that
I is a YES-instance of Q <= f(I) is a YES-instance of Q'

as follows:

Finally, time taken to write down f(I) is

Lec 17: Approx Algos

* Derive some “surrogate” for OPT value.

* Show we pay not too much more.

 E.g., p_max, Z’ 2] are lower bounds for OPT makespan

e Can write mteger LP, relax to get LP, “round” LP to get integer sol.

Lec 18-19: Online Algos and Experts

* Algorithms that work without knowing future

 Ski-rental, List Update (MoveToFront)
* potential function capturing difference between us and other algo B.

* Multiplicative Weights:
* #fmistakes <= (1+eps)(#mistakes of best expert) + O(\log N/eps).

Lec 20: Gradient Descent

* Minimizing convex function:
* Move small step in direction of negative gradient

Xep1 < Xe— N V()
* If done carefully, get within eps of optimum in time O(1/eps”2).

* In HW, approximately solve Ax=b quickly without Gaussian elim.
(when A is “well-conditioned”).

Lecture 21: Graph Compression

* Multiplicative spanners
Greedy algorithm to find them
Use high girth to prove they have a small number of edges Q

* Additive spanners EW/\

OO0 © OO

* Qis a shortest path from e tovin G!
* dg(e,v) <1+ dp(cv)
* dpr(u,v) =dp(u,c) + 1 +dg(e,v) <dp(u,c) +dp(c,v) +2 =dp(u,v) + 2

Lecture 22: Nearest Neighbor

Given a query point g and a database p4, ..., p, of n points in
{0,1}¢, with some preprocessing one can build a data
structure so that finding a 2-approximate near neighbor to g

can be done with an expected query time of n>d !

Lecture 23-24: Regression and Linear Algebra

Linear Regression

* Understand linear dependencies between variables in the
presence of noise.

Example Regression

Example 250
* Ohm'slawV=R"1| 200 R

150

100 + Example Regression
* Find linear function that .

50

best fits the data

0
0 50 100 150

Use sketch and solve framework!

Lec 25: VCG

* Want to allocate items to maximize social welfare = sum of values.
* But players want to maximize their own utility = value — price.
* Use prices to incentivize players to bid truthfully

* Vickery (second-price auction), VCG.
* Charge players = externality: how much they caused others value to decrease.

Lec 26: Polynomials

* Non-zero degree-d polynomial has at most d roots.
* Given d+1 points (a;, b;) there is unique poly P(x) passing thru them.

e Can use to error correct!
* View message of length n+1 as poly of degree n.
e Evaluate at n+2k+1 locations (2k more than necessary)
* Interpolate correctly if at most k errors.

