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* All available here: https://www.cs.cmu.edu/~15451/policies.html

4 Written Homeworks 20% (5% each)

3 Oral Homeworks 15% (5% each)
Online Quizzes+Class Participation+Bonus 12% (see below)
Midterm exams (in class) 30% (15% each)
Final exam 23%

* 12 weekly online quizzes due Thursday 11:59pm

* Solve written homeworks individually. Come to office hours or ask questions on
piazza! Latex solutions and submit on gradescope

* Oral homeworks can be solved in groups of 3
» Each quiz is worth 1 point, also up to 3 points for participation, bonus problems



Each HW has 4 problems

One problem is a programming problem — submit via Autolab (languages
accepted are Java, C, C++, Ocaml, SML)

For oral HWs you can collaborate, but write the programming problem yourself.
Each team has 45 minutes to present the 3 problems. Feel free to bring in notes!

Cite any reference material or webpage if you use it

* Randomized grading — we will choose 2 of the 3 problems to grade, while always
grading the programming problem

* Late homeworks and “grace/mercy” days — please see the website for details!



* Design and analyze algorithms!

* Algorithms: dynamic programming, divide-and-conquer, hashing and data
structures, randomization, network flows, linear programming

* Analysis: recurrences, probabilistic analysis, amortized analysis, potential
functions

* Dual to Algorithms: complexity theory and lower bounds

* New Models: online algorithms, machine learning, data streams



* Want provable guarantees on the running time of algorithms

 Why?

* Composability: if we know an algorithm runs in time at most T on any
input, don’t have to worry what kinds of inputs we run it on

 Scaling: how does the time grow as the input size grows?

* Designing better algorithms: what are the most time-consuming steps?



* In the median-finding problem, we have an array

aq,ay, ..., ap

and want the index i for which there are exactly |[n/2]| numbers larger than a;

* How can we find the median?
* Check each item to see if it is the median: ®(n?) time

* Sort items with MergeSort (deterministic) or QuickSort (randomized): ®(nlogn) time

e Can we find it faster? What about finding the k-th smallest number?



Assume aq, a,, ..., a, are all distinct for simplicity
Choose a random element a; in the list — call this the “pivot”

Compare each a; to a;
* Let LESS = {a; such that a; < aj}
* Let GREATER = {a; such that a; > a;}

If k < |LESS]|, find the k-th smallest element in LESS
If k = |LESS| + 1, output the pivot a;
Else find the (k-|LESS|-1)-th smallest item in GREATER

Similar to Randomized QuickSort, but only recurse on one side!



* Theorem: the expected number of comparisons for QuickSelect is at most 4n

e Let T(n) = max T(n, k), where T(n,k) is the expected number of comparisons

to find the k-th smallest item in an array of length n, maximized over all arrays

* T(n) is a non-decreasing function of n
* Let’s show T(n) < 4n by induction
* Basecase:T(1)=0<4

* Inductive hypothesis: T(n-1) < 4(n-1)



* Suppose we have an array of length n

* Pivot randomly partitions the array into two pieces, LESS and GREATER, with |LESS| + | GREATER| = n-1
e |LESS| is uniformin theset{0, 1, 2, 3, ..., n-1}

 Since T(i) is non-decreasing with i, to upper bound T(n) we can assume we recurse on larger half
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< 4n completing the induction



e Can we get an algorithm which does not use randomness and always
performs O(n) comparisons?

* |dea: suppose we could deterministically find a pivot which partitions
the input into two pieces LESS and GREATER each of size [gj

* How to do that?

* Find the median and then partition around that
* Um... finding the median is the original problem we want to solve....



* |dea: deterministically find a pivot with O(n) comparisons to partition the
input into two pieces LESS and GREATER each of size at least 3n/10

* DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

* Theorem: DeterministicSelect makes O(n) comparisons to find the k-th
smallest item in an array of size n



* DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

» Step 1 takes O(n) time since it takes O(1) time to find the median of 5 elements
* Step 2 takes T(n/5) time

e Step 3 takes O(n) time

Claim: |LESS| = 3n/10-1 and |GREATER| = 3n/10-1



* Claim: |LESS| = 3n/10-1 and |GREATER| = 3n/10-1

 Example 1: If n =15, we have three groups of 5:
{1, 2, 3,10, 11}, {4, 5, 6, 12, 13}, {7,8,9,14,15}
medians: 3 6 9
median of medians p: 6

* There are g = n/5 groups, and at least [%] of them have at least 3 elements at

most p. The number of elements less than or equal to p is at least

g1 3n
Zl> —
3 [2} 10

 Also at least 3n/10 elements greater than or equal to p



* DeterministicSelect:
1. Group the array into n/5 groups of size 5 and find the median of each group
2. Recursively, find the median of medians. Call this p
3. Use p as a pivot to split into subarrays LESS and GREATER
4. Recurse on the appropriate piece

* Steps 1-3 take O(n) + T(n/5) time
* Since |LESS| = 3n/10-1 and |GREATER| = 3n/10-1, Step 4 takes at most T(7n/10) time

*S0oT(n) <cn+T (E) + T (Z—g), for a constantc >0



°T(n)Scn+T(§)+T(Z—E)

en /o

7en /10

* Time iscn(1+(i)+(9)2 + ) < 10cn

10 10

* Recurrence works because n/5 +7n/10<n

Total: en
Total: 9en /10

Total: 81en/100

* For constants cand a4, a,, ...a, witha; +a, + ---a, < 1, the recurrence
T(n) < T(a;n) + T(a,n) + ...+ T(ayn) + cn solves to T(n) = O(n)
* Ifinstead a; +a, + ...+ a, = 1, the recurrence solves to T(n) = O(n log n)
 If we use median of 3 in DeterministicSelect instead of median of 5, what happens?



