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Outline

 2-player zero-sum games and minimax optimal strategies
e Connection to randomized algorithms

* General sum games, Nash equilibria



Game Theory

* How people make decisions in social and economic interactions

* Applications to computer science

e Users interacting with each other in large systems

e Routing in large networks

e Auctions on Ebay



Definitions

* A game has

* Participants, called players
e Each player has a set of choices, called actions

 Combined actions of players leads to payoffs for each player



Shooter-Goalie Game

» 2 players: shooter and goalie
* Shooter has 2 actions: shoot to her left or shoot to her right

* Goalie has two actions: dive to shooter’s left or to shooter’s right
* |left and right are defined with respect to shooter’s actions

 Set of actions for both Shooter and Goalie is {L, R}
* |f shooter and goalie each choose L, or each choose R, then goalie makes a save

* |If shooter and goalie choose different actions, then the shooter makes a goal



Payoff Matrix

If goalie makes a save, goalie has payoff +1, shooter has payoff -1

If shooter makes a goal, goalie has payoff -1, shooter has payoff +1

payoff goalie
matrix M L R
shooter L || (—1,1) | (1,—1)
R (1,-1) | (—1,1)

Payoff is (r,c), where r is payoff to row player, and c is payoff to the column player
For each entry (r,c), r+c = 0. This is called a zero-sum game

Zero-sum game does not imply “fairness”. If all entries are (1,-1) it is still zero-sum



An Aside

* Row-payoff matrix R consists of the payoffs to the row player

* Cis the column-payoff matrix
° Mi,j = (Ri,jr Ci,j) for alli andj

payoff goalie
matrix M L R
shooter L || (—1,1) | (1,-1)
R (1,-1) | (-1,1)

* R+ C =0 for zero-sum games

Row payoff goalie
matrix L R
shooter L || —1 1

R

1

—1




Pure and Mixed Strategies

* How should the players play?

* Pure strategy:
* Row player chooses a deterministic action |
* Column player chooses a deterministic action J
* Payoffis R;j for row player, and C;j for column player

* Pure strategies are deterministic, what about randomized strategies?
* Players have a distribution over their actions
* Row player decides on a p; € [0,1] for each row, with Y., ctionsiPi = 1
* Column player decides on a g; € [0,1] for each column, with ¥, tionsj9j = 1

* Distributions p and g are mixed strategies
How to define payoff for mixed strategies?



Expected Payoff

* Assume players have independent randomness
* Vr(p,q) = Zi’j Pr[row player plays i, column player plays j] - R;; = Zi,]- Pig;R;
* Ve(p,q) = Qi Pr[row player plays i, column player plays j] - Cj; = 2.1, Pi;Ci;

* Whatis Vr(p, q) + Vc(p, q)?

* 0, since zero-sum game

payoff goalie
matrix M | L R
shooter L || (—1,1) | (1,-1)

If p=(.5,.5)and g =(.5,

.5) what is VR?

Vg =.25-(=1) +.25-1+ 25-1+ .25-(=1)

If p=(.75,.25) and q = (.6, .4) what is VR?

Vr

= —0.1



Minimax Optimal Strategies

* Row player wants a distribution p* maximizing her expected payoff
over all strategies g of her opponent

* p* achieves lower bound |b = max min Vg (p, q)
P q

mixed strategy that maximizes the minimum expected payoff
_—_ -
N

Ib := max min Vgr(p,q)
p q

A >
Y

payofl when opponent plays ' optimal strategy against our choice p

* The row player can guarantee this payoff no matter what the column
player does. |b is a lower bound on the row-player’s payoff



Minimax Optimal Strategies

* Column player wants distribution g* maximizing his expected payoff over all
strategies p of his opponent

* q* achieving max min Vc(p, q)
q P

¢ Claim: max min V¢(p, q) = — min max Vg(p, q)
q p q P

* Proof: max min V¢(p, q) = max min —Vi(p, q)
q P q P

= max(— max Vr(p, q))
q p

= —min max Vr(p, q)
q p

Payoff to row player if column player plays q* is ub = min max Vi (p, q)
qa p

Column player can guarantee the row player does not achieve a larger expected
payoff, so this is an upper bound ub on row player’s expected payoff



Lower and Upper Bounds

* Row player guarantees she has expected payoff at least
lb = max min Vr(p, q)
P q

* Column player guarantees row player has expected payoff at most
ub = min max Vi(p,q)
qa p

Ib < ub, but how close is Ib to ub?



A Pure Strategy Observation

* Suppose we want to find row player’s optimal strategy p*

* Claim: can assume column player plays a pure strategy. Why?

* For any strategy p of the row player, Vr(p, q) = Z” Piq;R; Z q; - (i piRij)
* Column player can choose q to be the j for which }.; p;R ij Is minimal

* Ib = maxmin Vg (p, q) = maxmin };; p;R;;
p q p J

* ub = min max Vg(p, q) = min max »;; q;R;;
q p q i



payoff goalie

. matrix M . R
Shooter-Goalie Example B R TRt
R| (1,-1) | (-1,1)

Claim: minimax-optimal strategy for both players is (.5, .5)

Proof: For the shooter (row-player), let p = (p4, p») be the minimax optimal strategy
p1 = 0,p, = 0,and p; + p, = 1. Write p = (p, 1-p) with pin [0,1]

Suppose goalie (column-player) plays L

Shooter’s payoffisp:- (—1) + (1 —p) - (1) =1 - 2p (0,1) (L)
Suppose goalie plays R

Shooter’s payoffisp:- (1) + (1 —p) - (1) =2p—1 P
Choose p € [0,1] to maximize |b = mglx min(1 — 2p,2p — 1) (0,-1) (1,-1)

p = Y5 realizes this, and lb =0
Similarly show optimal strategy = (q4, q,) of goalieis (1/2,1/2) and ub =0
ub =lb =0, which is the value of the game



Asymmetric Shooter-Goalie

shooter L || (—

R| (1,-

Goalie is now weaker on the left
Let p = (p1, p2) be the minimax optimal shooter (row-player) strategy
Suppose goalie (column player) plays L

Shooter’s payoffis p - (— %) +(1-p)-(1)=1- (g)p
Suppose goalie plays R
Shooter’s payoffisp- (1) + (1 —p) - (—1) =2p—-1

Choose p € [0,1] to maximize Ib = max min(1 — (2) p, 2p—1)
p

Maximized when 1 — (3) p=2p—1,sop=4/7,and lb=1/7

What is the column player’s minimax strategy?



Asymmetric Shooter-Goalie shooter L | it
R (11_

Let q = (q, 1 — q) be the minimax optimal goalie (column-player) strategy

Suppose shooter (row player) plays L

Goalie’s payoffis q - (%) +(1—-q) (—1) = 37q —

Suppose shooter plays R
Goalie’s payoffisq- (—1)+ (1 —q) - (1) =1 —2q
Choose q € [0,1] to realize max min(32—q -1, 1—-2q)
q

32—q — 1 =1-2qimplies q =4/7, and expected payoff at least -1/7
Remember: this means row player’s ub at most 1/7
Uhh... Ib = ub again... Value of the game is 1/7



Another Example

e Suppose in a zero-sum game, Row player’s payoffs are: (0,2)
-1 -2
1 2 (0,1)

* What is row player’s minimax strategy? Why? (1/2,0)

» Suppose her distribution is (p, 1-p)

* Expected payoff if column player plays first action is: (1,-1)
p-(-D+(1—-p)-1=1-2p

» Expected payoff if column player plays second action is: (1,-2)
p-(-2)+(1—-p)-2=2—-4p

* These lines both have a negative slope

e Shouldplayp =0

e Can show column player should always play first action and value of game is 1



Exercise 1: What if both players have somewhat different weaknesses? What if the payofls are:

(-1/2, 1/2) (3/4, -3/4)
(1; -1) (-3/2| 3/2)

Show that minimax-optimal strategices are p = (2/3,1/3),q = (3/5,2/5) and value of game is 0.
Exercise 2: For the game with payoffs:

(-1/2, 1/2) (3/4, -3/4)

(1, =1) (-2/3, 2/3)

Show that minimax-optimal strategies are p — %, %), g = (%, %) and value of game is .l,

Exercise 3: For the game with payolffs:

(-1/2, 1/2) =1y 1)
(1, -1) (2/3, -2/3)
2

Show that minimax-optimal strategics are p = (0,1),q = (0, 1) and value of game is 3.



Von Neumann’s Minimax Theorem

* In each example,
* row player has a strategy p* guaranteeing a payoff of |b for him

* column player has a strategy q* guaranteeing row player’s payoff is at most ub
* |b = ub!

* Von Neumann: Given a finite 2-player zero-sum game,

lb = max min Vg (p, q) = min max Vg(p,q) = ub
P 4 q D

Common value is the value of the game

* In a zero-sum game, the row and column players can tell their strategy to each
other and it doesn’t affect their expected performance!

* Don’t tell each other your randomness



Lower Bounds for Randomized Algorithms

* A randomized algorithm is a zero-sum game

e Create a row-payoff matrix R:
* Rows are possible inputs (for sorting, n!)
e Columns are possible algorithms (e.g. every algorithm for sorting)
* Rjj is cost of algorithm j on input i (e.g. number of comparisons)

* A deterministic algorithm with good worst-case guarantee is a column
with entries that are all small

* A randomized algorithm with good expected guarantee is a distribution
g on columns so the expected cost in each row is small



Lower Bounds for Randomized Algorithms

* Minimax-optimal strategy for column player is best randomized algorithm

* A lower bound for a randomized algorithm is a distribution p on inputs so for
every algorithm j, expected cost of running j on input distribution p is large

* show lb is large for the game

e give strategy for the row player (distribution on inputs) such that every
column (deterministic algorithm) has high cost



Lower Bounds for Randomized Sorting

* Theorem: Let A be a randomized comparison-based sorting algorithm. There’s
an input on which A makes an expected (Ign!) comparisons

* Proof: consider uniform distribution on n! permutations of n distinct numbers

N

* nl leaves

* No two inputs go to same leaf

:"_‘.

* How many leaves at depth Ig(n!) -107? (aya,) P
(IgnH)-10 N ﬁjt’\g 2 2
o < 142+4+... + 218 <3 ((1,23)) <\03 (2,1,3)

* 511/512 > .99 fraction of inputs are at r—4] 13 CD 12)

depth > lg(n!)-10
* Expected depth > .99(Ig(n!) — 10) = Q(Ign!)



General-Sum Two-Player Games

* Many games are not zero-sum, have “win-win” or “lose-lose” payoffs

* Game of “chicken”
» Suppose two drivers facing each other each drive on their left (L) or right (R)

payoff Bob
matrix M L R
AliceL || (1,1) | (-1,-1)
R ‘ (-1,-1) (1,1)

* What is a good notion of optimality to look at?



Nash Equilibria

* (p, q) is stable if no player has incentive to individually switch strategy
* For any other strategy p’ of row player,
row player’s new payoff = Zi,j p{qui,j < Zi,j piq;jR;;j = row player’s old payoff
* For any other strategy q' of column player,
column player’s new payoff = Zi,j jof q]-'Ci,j < Zi’j piq;Ci; = column player’s old payoff

* For chicken, ((1,0),(1,0)) and ((0,1),(0,1)) and ((1/2,1/2),(1/2,1/2)) are Nash Equilibria

* Theorem (Nash): Every finite player game (with a finite number of strategies) has a Nash
equilibrium



